Document Type : Original Research Article

Authors

1 PG Department of Physics, National Institute of Technology Srinagar India-190006

2 Section of Mycology and Plant Pathology, Department of Botany, University of Kashmir, India-190006

10.22034/ajgc.2021.129974

Abstract

Microwave heating has been adopted as green approach for the synthesis of bohmite (AlO(OH)) and brucite (Mg(OH)2) nanoparticles (NPs) for antifungal activity. The synthesis of AlO(OH) and Mg(OH)2 NPs were carried out at 150 °C and the resulting NPs have an average diameter of 10-20 nm. The Mg(OH)2 and AlO(OH)  have trigonal and orthorhombic crystal structure, respectively. The antifungal activity of the synthesized NPs was assessed using the Penicillium Expansum (P. expansum) through agar well diffusion method. The Mg(OH)2 and AlO(OH) revealed comparable significant antifungal activities towards P. expansum. About 79% and 74% reduction in the growth of the fungus was obtained respectively of AlO(OH) and Mg(OH)2 as compared to the standard control haxahit. Nanomaterials bind on the surface of the fungi thereby preventing the normal activity of fungi and inhibit their growth, ultimately kill them. Reported NPs have significant potential to replace expensive nanomaterials in the field of antimicrobial studies.

Graphical Abstract

Microwave synthesis of AlO(OH) and Mg(OH)2 nanoparticles and evaluation of their antifungal activity

Keywords

Main Subjects

[1]. Hsueh P.R. J Formos Med Assoc., 2020, 109:685
[2]. Allahverdiyev A.M., Abamor E.S., Bagirova M., Rafailovich M. Future Microbiol., 2011, 6:933
[3]. Ben A.R., Olshtain P.K, Krieger M., Oren I., Bishara J., Dan M., Wiener W.Y., Weinberger M., Zimhony O., Chowers M., Weber G., Potasman I., Chazan B., Kassis I., Shalit I. Antimicrobial agents and chemotherapy., 2012, 56:2518
[4]. Susan J.H., Dasa C., Michael J.A., Ahmed A., Matthew C.F., Alessandro C.P., Michel L., Maiken C.A., David S.P., David W.D. Emerging Infectious Diseases., 2009, 15:1068
[5]. Kuan X.Z., Hua M.Q., Yi L.S., Quan Z.D., Cong L., Li T.Y., Rongya Y. Immunology and Infection., 2016, 46:182
[6]. Nurit B., Yael H.H., Avi D., Wahid K., Ronen H. Evidence-Based Complementary and Alternative Medicine., 2015, 2015:1
[7]. Linlin W., Chen H., Longquan S. International Journal of Nanomedicine., 2017,12:1227
[8]. Yael N.S., Jason A., Urs O.H., Horacio B. J Nanobiotechnol., 2017, 15:65
[9]. Solmaz M.D., Farzaneh L., Mohammad B. J., Mohammad H.Z., Khosro A. Materials Science and Engineering C., 2014, 44:278
[10]. Pragati J, Jogender S.R., Poonam K., Kiran N. Int. J. Nano Dimens., 2018, 9:198 
[11]. Fernandez A.S., Dela R.G.S.C., Yanez M.R., Guerrero S.C., Gomez V.L.S., Gomez C.S., Rabanal M.E., Schubert U.S., Fort R., Quintana P. Journal of Sol-Gel Science and Technology., 2019, 89:310
[12]. Mohammad J., Mohammad A.A., Arun K.S., Syed G.A., Haris M.K., Ruchita P., Javed A., Swaranjit S.C. RSC Adv., 2016, 6:107577
[13]. Dong C., Cairney J., Sun Q., Maddan O.L., He G., Deng Y. J Nanopart Res., 2010,12:2101
[14]. Juanni C., Lintong W., Mei L., Shasha L., Ziyan L., Wei D. Frontiers in Microbiology., 2020 11:1
[15]. Pitt J.I., Hocking A.D. Fungi and food spoilage. Blackie Academic and Professional: London, 1997; p. 169
[16]. Jing C., Jing W., Xin Z., Yeling J. Materials Chemistry and Physics., 2008, 108:421
[17]. Nori N.M., Abdi K., Khoshayand M.R., Ahmadi S.H., Lamei N., Shahverdi A.R. J. Exp. Nanosci., 2013, 8:442
[18]. Zeinab S., Atefeh A., Hamid F., Mahboubeh A.S., Mandana J., Mitra M., Mojtaba S. Journal of Trace Elements in Medicine and Biology., 2017, 39:116
[19]. Ahluwalia V.K. Green Chemistry: Microwave Assisted organic synthesis., Narosa Publishing House: New Delhi, 2013; 8.3
[20]. Torres R., Teixido N., Vinas I., Mari M., Casalini L., Giraud M., Usall J. Journal of Food Protection., 2006, 69:2703
[22]. Khaled M.S., Shaukat S., Rola M.A.S., Massimo F.B. American Journal of Nanomaterials., 2014, 2:21
[23]. Alex T.C., Rakesh K, Roy S.K., Mehrotra S.P. Hydrometallurgy., 2013, 137:23
[24]. Anam A., Abad A., Mohd A., Shamsuzzaman.New J. Chem., 2018, 42:184
[25]. Geeta R., Purushottam D.S. Int. J. Appl. Ceram. Technol., 2015, 12:124
[26]. Mozaffar A., Masoud H., Pouria J. Boletin De La Sociedad Espanola De Ceramica Y Vidro., 2018, 57:66
[27]. Parham S., Wicaksono D.H.B., Bagherbaigi S., Lee S.L., Nur H. J. Chin. Chem. Soc., 2016, 62:385
[28]. McDonnell G., Russell A.D. Clin. Microbiol. Rev., 1999,12:147
[29]. Davide S., Ruben G., Vasilis P.V. Mycology., 2018, 9:43
[30]. Chamorn M., Yasuyoshi H. International Journal of Food Microbiology., 2006, 107:299
[31]. Dimkpa C.O., McLean J.E., Britt D.W., Anderson A. J. Biometals., 2013, 26:913
[32]. Adrian M., Sorin M., Gabi M.M., Gina C., Calina P.C. Pharmaceutical Biotechnology., 2020,4:97
[33]. Mousa A., Kamel A.A.E., Ashwag S., Ernest S. G., Eleonora V.S., Alexander V.N. J. Fungi., 2020, 6:51