CiteScore: 1.8     h-index: 21

Document Type : Original Research Article

Authors

Department of Chemistry,University of North Bengal, Dist-Darjeeling, West Bengal, India

Abstract

In this work, a convenient and greener procedure for synthesizing substituted pyrano-dichromeno-dione and substituted chromeno-pyrido-pyrimidinone derivatives were explored using Sulphonated Rice Husk (SRH) as a novel bio-degradable, greener, heterogeneous catalyst. We designed an efficient pseudo three-component synthetic method for 7-aryl/heteroaryl substituted pyranodichromene-6, 8-dione and 7-aryl/heteroaryl substituted chromeno[4, 3-d]pyrido[1, 2-a]pyrimidinone derivatives using this greener catalyst (SRH) under reasonable reaction condition. The fundamental features of this procedure are the operational simplicity, hassle-free recovery of product, and reusability of the catalyst with excellent product yield (up to 98%). The toxic metal-free catalyst was prepared conveniently, and characterized using different spectroscopic techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX). Then the synthesized material was used for the greener synthetic target.

Graphical Abstract

A design for convenient and greener root towards one-pot multi-component synthesis of substituted pyrano-dichromeneo-dione and chromeno-pyrido-pyrimidinone derivatives using rice husk based heterogeneous catalyst

Keywords

Main Subjects

[1]. Fylaktakidou K.C., Hadjipavlou-Litinas D.J., Litinas K.E., Nicolaides D.N. Curr. Pharm. Des., 2004, 10:3813
[2]. Grover J., Jachak S.M. RSC Adv., 2015, 5:38892
[3]. Thakur A., Singla R., Jaitak V. Eur. J. Med. Chem., 2015, 101:476
[4]. Hu Y.Q., Xu Z., Zhang S., Wu X., Ding J.W., Lv Z.S., Feng L.S. Eur. J. Med. Chem., 2017, 136:122
[5]. Hassan M.Z., Osman H., Ali M.A., Ahsan M.J. Eur. J. Med. Chem., 2016, 123:236
[6]. Hu X.L., Xu Z., Liu M.L., Feng L.S., Zhang G.D. Curr. Top. Med. Chem., 2017, 17:3219
[7]. Beccalli E.M., Contini A., Trimarco P. Tetrahedron Lett., 2004, 45:3447
[8]. Zhou Y., Zhang X., Yang S., Li Y., Qing Z., Zheng J., Li J., Yang R. Anal. Chem., 2017, 89:4587
[9]. Jeon M.J., Kim S.S., Jeon J.K., Park S.H., Kim J. M., Sohn J.M., Lee S.H., Park Y.K.  Nanoscale Res. Lett., 2012, 7:18
[10]. Soltani N., Bahrami A., Pech-Canul M.I., Gonzàlez L.A. Chem. Eng. J., 2015, 264:899
[11]. a) Wang L., Wang X., Zou B., Ma X., Qu Y., Rong C., Li Y., Su Y., Wang Z. Bioresour. Technol., 2011, 102:8220; b) Qadri S.B., Imran M.A., Fliflet A.W., Rath B.B., Goswami R., Caldwell J. D.  J. Appl. Phys., 2012, 111:1
[12]. Dey, S., Basak, P., Ghosh, P. ChemistrySelect, 2020, 5:15209
[13]. Hassanloie N., Pesyan N. N., Sheykhaghaei G. Appl .Organometal. Chem., 2019, 34:e5242
[14]. Seddighi M., Shirini F., Mamaghani M., RSC Adv., 2013, 3:24046
[15]. Bramhachari G., karmakar I., Nurjamal K. ACS Sustainable Chem. Eng., 2018, 8:11018