CiteScore: 2.1     h-index: 21

Document Type : Original Research Article


Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran


In this research study, stability, chemical properties, and thermodynamic parameters nano-derivatives of the cytarabine with the fullerene C60 nanostructure were calculated in the range of 298.15-310.15 K at the B3LYP/6-31G* level of theory. Possible isomers of the cytarabine (four different configurations) with C60 molecule were considered, and the effect of temperature on the thermodynamic parameters was studied. The adsorption energy, Gibbs free energy changes (ΔGad), enthalpy (ΔHad) variations, thermodynamic equilibrium constant, specific heat capacity, chemical hardness, energy gap, and electrophilicity were evaluated, as well. The results indicated that the adsorption of the cytarabine with fullerene C60 is spontaneous. In addition, the calculated specific heat capacity values revealed that, the C60 can be utilized as a sensing material in the construction of thermal biosensors for cytarabine determination.

Graphical Abstract

Investigating the performance of nano structure C60 as nano-carriers of anticancer cytarabine, a DFT study


[1]. Panz K., Miksch K. J. Environ. Manage., 2012, 113:85
[2]. Ahmadi R., Shemshaki L. Int. J. Bio-Inorg. Hybrid Nanomater., 2016, 5:141
[3]. Ahmadi R., Jalali Sarvestani M.R. Phys. Chem. Res., 2018, 6:639
[4]. Jalali Sarvestani M.R., Ahmadi R. Int. J. New. Chem., 2018, 5:409
[5]. Jalali Sarvestani M. R., Ahmadi R. Int. J. New. Chem., 2017, 4:400
[6]. Ahmadi R., Jalali Sarvestani M.R. Int. J. Bio-Inorg. Hybrid Nanomater., 2017, 6:239
[7]. Ahmadi R. Int. J. Nano. Dimens., 2107, 8:250
[8]. Culebras M., Lopez A.M., Gomez C.M., Cantarero A. Sens. Actuators. A. Phys., 2016, 239:161
[9]. Ayoub K., Van Hullebusch E.D., Cassir M., Bermond A. J. Hazard. Mater., 2010, 178:10
[10]. Wu J.T., Zhang J.G., Yin X., He P., Zhang T.L. Eur. J. Inorg. Chem., 2014, 27:4690
[11]. Zhao Z., Du Z., Han Z., Zhang Y., He C. J. Energ. Mater., 2016, 34:183
[12]. Lin Q.H., Li Y.C., Qi C., Liu W., Wanga Y., Pang S.P. J. Mater.Chem. A., 2013, 1:6776
[13]. Zhang J., Shreeve J.M. J. Am. Chem. Soc., 2014, 136:4437
[14]. Bahrami Panah N., Vaziri R. Int. J. Nano Dimens., 2015, 6:157
[15]. Ahmadi R., Jalali Sarvestani M.R. Iran. Chem. Commun., 2019, 7:344
[16]. Farhang Rik B., Ranjineh khojasteha R., Ahmadi R., Karegar Razi M. Iran. Chem. Commun., 2019, 7:405
[17]. Zohari N., Abrishami F., Ebrahimikia M. Zaac, 2016, 13:749
[18]. Ahmadi R., Pirahan Foroush M. Ann. Mil. Health. Sci. Res., 2014, 12:39
[19]. Ahmadi R., Mirkamali E.S. J. Phys. Theor. Chem. IAU Iran., 2016, 13:297
[20]. Richard L. Licensee Bio-Med Central Ltd., 2013, 2:20
[21]. Ahmadi R., Ebrahimikia M. Phys. Chem. Res., 2017, 5:617
[22]. Yang J., Qian G., Wu Y., Zhang X., Liu Y., Li Z. 2017, 445:1
[23]. Shahabadi N., Falsafi M., Mansouri K. Colloids Surf. B Biointerfaces., 2018, 141:213
 [24]. Shemshaki L., Ahmadi R. Int. J. New. Chem., 2015, 2:247
[25]. Ahmadi R., Madahzadeh Darini N. Int. J. Bio-Inorg. Hybr. Nanomater., 2016, 5:273
[26]. Ahmadi R., Shemshaki L. Int. J. Bio-Inorg. Hybr. Nanomater., 2016, 5:141
[27]. Zhang J.G., Niu X.Q., Zhang S.W., Zhang T.L., Huang H.S., Zhou Z.N. Comput. Theor. Chem., 2011, 964:291