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Aniline, phenol, and their derivatives are widely used in industrial chemicals 
that consequently have a high potential for environmental pollution. Genetic 
algorithm and partial least square (GA-PLS), kernel partial least square (GA-
KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) 
techniques were used to investigate the correlation between 
chromatographic retention (log k) and descriptors for modelling the toxicity 
to fathead minnows of anilines and phenols. Descriptors of GA-PLS model 
were selected as inputs in L-M ANN model. The described model does not 
require experimental parameters and potentially provides useful prediction 
for log k of new compounds. Finally a model with a low prediction error and 
a good correlation coefficient was obtained by L-M ANN. The stability and 
prediction ability of L-M ANN model was validated using external test set 
techniques.  
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Graphical Abstract 

 

 

Introduction 

Aromatic amines and phenols (Anilines and related derivates) are widely used industrial 

chemicals and are therefore an important class of environmental pollutants. Aniline is the parent 

molecule of a vast family of aromatic amines. Since its discovery in 1826, it has become one of the 

hundred most important building blocks in chemistry. Aniline and its derivatives containing chloro-

substituents are used as intermediates in many different fields of applications, such as the production 

of isocyanates, rubber processing chemicals, dyes and pigments, agricultural chemicals and 

pharmaceuticals. These compounds can be released into the surface water as industrial effluents or 

as break-down products of pesticides and dyes. A large database on the effects of single chemicals 

has been developed using the fathead minnow for acute partial and life-cycle tests [1].  

Healthy animals are the most important aspect for a good toxicity test. Emphasis should be placed 

on determining the quality of the organisms used for producing the test organisms. This report and 

the video culturing of fathead minnows (Pimephales promelas) were produced by EPA to clarify and 

expand on culturing methods explained in the acute methods manual. The waters to be used for 

culturing fathead minnows are any toxicity-free freshwater including natural water, drinking water, 

or reconstituted water. The water source chosen for culturing may not necessarily be the same type 

of water used for testing. However, whichever water is chosen for culturing or testing, it must be 

tested to ensure that good survival and reproduction of the organisms are possible and that 

consistency is achievable. Before any water is used, it should be tested for possible contamination by 
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pesticides, heavy metals, major anions and cations, total organic carbon, suspended solids, or any 

other suspected contaminants. The water quality should ensure adequate survival, growth, and 

reproduction and it should be from a consistent source to provide constant quality during any given 

testing period [2]. The fathead has been very commonly used as a baitfish and, more recently, has 

emerged in the aquarium trade as the rosy-red minnow. This color morph was discovered in several 

arkansas breeding farms in 1985. Both sexes of this strain have a rosy-golden body and fins and may 

express dark splotches of wild-type fathead coloration. It is worth mentioning that they are sold in 

pet shops primarily as feeder fish. They can also be used in home aquariums as pets [3]. This species 

is also important as a biological model in aquatic toxicology studies. Because of its relative hardiness 

and large number of offspring produced, EPA guidelines outline its use for the evaluation of acute 

and chronic toxicity of samples or chemical species in vertebrate animals.  

  Chemical modelling techniques are based on the premise that the structure of a compound 

determines all its properties. The study of the type of chemical structure of a foreign substance which 

will interact with a living system and produce a well-defined biological endpoint is commonly 

referred to as quantitative structure-retention relationships QSRR [4, 5]. The use of QSRR for toxicity 

estimation of new chemicals or regulatory toxicological assessment is increasing, especially in 

aquatic toxicology. Alternatively, quantitative retention relationships QRRR represent other kind of 

modelling techniques in which chromatographic retention parameters are used as descriptor and/or 

predictor variables of a given biological response of chemicals. QSRR models which use retention 

factors (log k) obtain conventional RP-HPLC, micellar liquid chromatography (MLC) and 

biopartitioning micellar chromatography (BMC) which will be  reported [6‒10]. 

 The aim of the present study is the estimation of optimal descriptors ability calculated by linear 

regression (the partial least squares (PLS) and non-linear regressions (the kernel partial least 

squares (KPLS) and Levenberg- Marquardt artificial neural network (L-M ANN) in QSRR analysis of 

logarithm of the retention factor in BMC (log k) for toxicity to fathead minnows of anilines and 

phenols. The stability and predictive power of these models were validated using Leave-Group-Out 

Cross-Validation (LGO CV) and external test set. This is the first research on the QSAR which uses GA-

PLS for the chromatographic retention of ecotoxicity of anilines and phenols. 

Experimental 

Computer hardware and software 

A pentium IV personal computer (CPU at 3.06 GHz) with the Windows XP operating system was 

used. The structures of the compounds were drawn using Hyper Chem version 7.0. All molecules 

were preoptimized using molecular mechanics AM1 method in the HyperChem program. The output 

https://en.wikipedia.org/wiki/Baitfish
https://en.wikipedia.org/wiki/Feeder_fish
https://en.wikipedia.org/wiki/Pet
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files were exported from dragon for generating descriptors which  were developed by Todeschini et 

al [11]. The GA-PLS, GA-KPLS, L-M ANN, cross validation and other calculations were performed in 

MATLAB (Version 7.0, Math works, Inc). 

Data set 

The 65 phenols and anilines for which experimental chromatographic retention (log k) values to 

fathead minnows were available [12] were used. The name of studied compounds and their 

experimental log k values for training and test sets are shown in Table 1 and Table 2. These data were 

obtained by biopartitioning micellar chromatography. An Agilent 1100 chromatograph with a 

quaternary pump and an UV-vis detector (Variable wavelength detector) was employed. It is 

equipped with a column thermostat with 9 μL extra-column volume for preheating mobile phase 

prior to the column and an autosampler with a 20 μL loop. All the assays were carried out at 25 °C. 

Data acquisition and processing were performed by means of an HP Vectra XM computer 

(Amsterdam, the netherlands) equipped with HP-Chemstation software (A.07.01 [682] ©HP 1999). 

Two Kromasil C18 columns (5 μm, 150 mm×4.6 mm i.d.; Scharlab S.L., Barcelona, spain) and (5 μm, 

50 mm×4.6 mm i.d.; scharlab) were used. The mobile phase flow rate was 1.0 or 1.5 mLmin−1 for the 

150 mm and 50 mm column length, respectively. The detection was performed in UV at 254 nm for 

acetanilide, antipyrine and propiophenone (Reference compounds), and 240 nm for phenols and 

anilines. 

Determination of molecular descriptors 

Molecular descriptors are defined as numerical characteristics associated with chemical 

structures. The molecular descriptor is the final result of a logic and mathematical procedure which 

transforms chemical information encoded within a symbolic representation of a molecule into a 

useful number applied to correlate physical properties. The Dragon software was used to calculate 

the descriptors in this research and a total of molecular descriptors, from 18 different types of 

theoretical descriptors, was calculated for each molecule. Since the values of many descriptors are 

related to the bonds length and bonds angles etc., the chemical structure of every molecule must be 

optimized before calculating its molecular descriptors. For this reason, the chemical structure of the 

65 studied molecules was drawn using hyperchem software and saved with the HIN extension. To 

optimize the geometry of these molecules, the AM1 geometrical optimization was applied. After 

optimizing the chemical structures of all compounds, the molecular descriptors were calculated 

using dragon. A wide variety of descriptors have been reported in the literature,  and used in QSRR 

analysis. 
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Table 1. The compounds and log retention factor for calibration and prediction sets 

Emtry Compounds calibration set log k 

1 2,6-Dinitrophenol 0.793 

2 2,4-Dinitrophenol 0.943 

3 4,6-Dinitro-2-methylphenol 1.004 

4 2,5-Dinitrophenol 1.017 

5 3-Hydroxyphenol 1.044 

6 2-Nitrophenol 1.2 

7 Phenol 1.245 

8 4-Nitroaniline 1.257 

9 2,3,6-Trichlorophenol 1.349 

10 2,3,5,6-Tetrachlorophenol 1.352 

11 Pentabromophenol 1.354 

12 4-Nitrophenol 1.378 

13 2,3,4,6-Tetrachlorophenol 1.352 

14 4-Mehtylphenol 1.354 

15 2,4,6-Tribromophenol 1.378 

16 3-Nitrophenol 1.394 

17 2,4,6-Triiodophenol 1.411 

18 2,6-Dichlorophenol 1.417 

19 2,4-Dinitroaniline 1.448 

20 2,4,6-Trichlorophenol 1.459 

21 2-Chloro-4-nitroaniline 1.46 

22 4-Chlorophenol 1.476 

23 4-Ethylphenol 1.477 

24 2,4-Dimethylphenol 1.496 

25 2-Chloro-4-methylaniline 1.529 

26 4-Chloro-3-methylphenol 1.552 

27 2,3,6-Trimethylphenol 1.567 

28 N,N-Dimethylaniline 1.576 

29 Pentafluoroaniline 1.6 

30 2,3,4-Trichloroaniline 1.626 

31 N,N-Dimethylaniline 1.642 

32 Pentafluoroaniline 1.668 



Quantitative structure-retention relationships …                                                                                                                                                                      149 

33 2,3,4-Trichloroaniline 1.67 

34 4-Phenoxiphenol 1.683 

35 2-Phenylphenol 1.709 

36 2,3,5-Trichlorophenol 1.757 

37 3,5-Dichlorophenol 1.765 

38 3,4,5-Trichlorophenol 1.817 

39 2,3,4,5-Tetrachlorophenol 1.822 

40 2,6-Diisopropylaniline 1.896 

41 2,6-Diisopropylphenol 1.986 

42 2,6-Di(tert)butil-4-methylphenol 2.351 

43 2,6-Dimethoxiphenol 0.979 

44 4-Methylaniline 1.227 

45 N-Methylaniline 1.351 

46 4-Chloroaniline 1.408 

47 2-Chloroaniline 1.459 

48 2-Chlorophenol 1.485 

49 3,4-Dichloroaniline 1.563 

50 2,4,6-Trimethylphenol 1.629 

51 2,4-Dichlorophenol 1.673 

52 4-Butylaniline 1.713 

53 2,4,5-Trichlorophenol 1.778 

54 2,3,5,6-Tetrachloroaniline 1.832 

55 Nonylphenol 2.186 

  

Genetic algorithm for descriptor selection 

In QSRR studies, after calculating the molecular descriptors from optimized chemical structures 

of all the components available in the data set, the problem is to find an equation that can predict the 

desired property with the least number of variables as well as highest accuracy. In other words, the 

problem is to find a subset of variables (Most statistically effective molecular descriptors for the log 

k) from all the available variables (All molecular descriptors) that can predict log k with the minimum 

error in comparison to the experimental data. A generally accepted method for this problem is the 

genetic algorithm based linear and non linear regressions (GA-PLS and GA-KPLS). In these methods, 
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the genetic algorithm is applied for the selection of the best subset of variables with respect to an 

objective function.  

Table 2. The data set and 

log k for test set 
Entry Compounds log k 

1 Aniline 0.988 

2 4-Methoxyphenol 1.158 

3 3-Methoxyphenol 1.266 

4 Pentachlorophenol 1.384 

5 4-Ethylaniline 1.446 

6 2-Methylphenol 1.465 

7 4-Ethoxy-2-nitroaniline 1.526 

8 2,6-Dichloro-4-aniline 1.576 

9 4-Propylphenol 1.669 

10 4-Tert-butylphenol 1.748 

11 4-Hexyloxyaniline 1.785 

12 4-Tert-pentylphenol 1.841 

13 4-Octylaniline 2.043 
 

 

GA is a stochastic optimization method that has been inspired by evolutionary principles. The 

distinctive aspect of GA is that it investigates many possible solutions simultaneously, each of which 

explores different regions in parameter space. GA has been applied as an optimization technique in 

several scientific fields [13, 14]. In GA for variable selection, the chromosome and its fitness in the 

species represent a set of variables and predictivity of the derived QSRR model, respectively. GA 

consists of three basic steps: (I) an initial population of chromosomes is created. The number of the 

population is dependent on the dimensions of application problems. A binary bit string represents 

each chromosome. Bit “1” denotes a selection of the corresponding variable, and bit “0” denotes a 

non selection. The values of a binary bit are determined in a random way (Probability of initial 

variable selection). (II) A fitness of each chromosome in the population is evaluated by predictivity 

of the QSRR model derived from the binary bit string. (III) The population of chromosomes in the 

next generation is reproduced. The third step can be divided into three operations: selection, 

crossover, and mutation. The application probability of these operators was varied linearly with a 

generation renewal. For a typical run, the evolution of the generation was stopped when 90% of the 

generations had taken the same fitness. In this paper, size of the population is 30 chromosomes, the 

probability of initial variable selection is 5:V (V is the number of independent variables), crossover 
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is multi point, the probability of crossover is 0.5, mutation is multi point, the probability of mutation 

is 0.01 and the number of evolution generations is 1000. For GA-PLS and GA-KPLS programs, 3000 

runs were performed. 

Data pre-processing 

Each set of the calculated descriptors was collected in a separate data matrix Di with a dimension 

of (m×n) where m and n are the number of molecules and the number of descriptors, respectively. 

Grouping of descriptors was based on the classification achieved by Dragon software. In each group, 

the calculated descriptors were searched for constant or near constant values for all molecules and 

those detected were removed. Before applying the analysis methods and due to the quality of data, a 

previous treatment of the data is required. Scaling and centering can be considered as the pre-

processing methods which are needed before performing the regression methods as combined with 

FE. The results of projection methods depend on the normalization of the data. Descriptors with small 

absolute values have a small contribution to overall variances; this biases towards other descriptors 

with higher values. With appropriate scaling, equal weights are assigned to each descriptor so that 

the important variables in the model can be focused. In order to give all variables the same 

importance, they are standardized to unit variance and zero mean (Autoscaling). 

Nonlinear model 

Artificial neural network 

A three-layer back propagation artificial neural network ANN with a sigmoid transfer function 

was used in the investigation of feature sets. The descriptors from the calibration set were used for 

the model generation whereas the descriptors from the prediction set were used to stop the 

overtraining of network. Moreover, the descriptors from the test set were used to verify the 

predictivity of the model. Before training the networks, the input and output values were normalized 

with auto-scaling of all data [15, 16]. The goal of training the network is to minimize the output errors 

by changing the weights between the layers. 

                                                                                                                                                                           (1)     

In this,  is the change in the weight factor for each network node, α is the momentum factor, 

and F is a weight update function, which indicates how weights are changed during the learning 

process. The weights of hidden layer were optimized using the Levenberg-Marquardt algorithm, a 

second derivative optimization method [17]. 

1,,  nijnnij WFW 
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Levenberg-Marquardt Algorithm 

In Levenberg-Marquardt algorithm, the update function, Fn, is calculated using the following 

equations. 

 

eJg T  

 

                                                                                      (2)     

(3)     

(4)        

Where g is gradient and J is the Jacobian matrix that contains first derivatives of the network errors 

with respect to the weights, and e is a vector of network errors. The parameter µ is multiplied by 

some factor (λ) whenever a step would result in an increased e and when a step reduces e, µ is divided 

by λ [18]. 

Results and discussion 

Linear model  

Results of the GA-PLS model 

The best model is selected on the basis of the highest square correlation coefficient leave-group-

out cross validation (R2), the least root mean squares error (RMSE) and relative error (RE). These 

parameters are probably the most popular measures of how well a model fits the data. The best GA-

PLS model contains 13 selected descriptors in 5 latent variables space. These descriptors were 

obtained constitutional descriptors [sum of conventional bond orders (H-depleted) (SCBO)], 

topological descriptors (Balaban-type index from polarizability weighted distance matrix (Jhetp) and 

eccentricity (ECC)), 2D autocorrelations (Broto-Moreau autocorrelation of a topological structure- 

lag 6 / weighted by atomic Sanderson electronegativities (ATS6e), Burden eigenvalues (lowest 

eigenvalue n.1 of Burden matrix / weighted by atomic Sanderson electronegativities (BELe1), RDF 

descriptors (Radial Distribution Function-4.5 / unweighted (RDF045u), Radial Distribution 

Function-11.5 / unweighted (RDF115u), Radial Distribution Function-6.5 / weighted by atomic 

masses (RDF065m) and Radial Distribution Function-12.5 / weighted by atomic masses (RDF125m), 

WHIM descriptors (1st component symmetry directional WHIM index / weighted by atomic van der 

Waals volumes (G1v)), functional group counts (number of total tertiary C(sp3) (nCt) and number of 

aromatic C(sp2) (nCar)) and quantum descriptors [lowest unoccupied molecular orbital (LUMO)]. 

The R2 and mean RE for training and test sets were (0.864, 0.751) and (8.04, 18.84), respectively. The 

predicted values of log k are plotted against the experimental values for training and test sets in 

00 gF 

eJIJJF TT

n  1][ 
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Figure 1. Generally, the number of components (Latent variables) is less than the number of 

independent variables in PLS analysis. The PLS model uses higher number of descriptors that allow 

the model to extract better structural information from descriptors in order to result in a lower 

prediction error. 

Nonlinear model 

Results of the GA-KPLS model 

In this paper a radial basis kernel function, k(x,y)= exp(||x-y||2/c), was selected as the kernel 

function with 2rmc  where r is a constant that can be determined by considering the process to 

be predicted (Here r was set to be 1), m is the dimension of the input space and 2  is the variance of 

the data [19, 20]. It means that the value of c depends on the system under the study. The 10 

descriptors in 5 latent variables space chosen by GA-KPLS feature selection methods were contained. 

These descriptors were obtained geometrical descriptors (gravitational index G2 (bond-restricted) 

(G2), spherosity (SPH) and HOMA total (HOMT)), RDF descriptors (Radial Distribution Function - 3.0 

/ weighted by atomic masses (RDF030m)), 3D-MoRSE descriptors (3D-MoRSE-signal 10 / 

unweighted (Mor10u) and 3D-MoRSE-signal 18 / weighted by atomic masses (Mor18m)), GETAWAY 

descriptors (Leverage-weighted autocorrelation of lag 2 / unweighted (HATS2u) and H 

autocorrelation of lag 7 / weighted by atomic masses (H7m)), charge descriptors (relative positive 

charge (RPCG)) and quantum descriptors (Dipole moment ( )). The R2 and mean RE for training and 

test sets were (0.827, 0.709) and (9.43, 20.82), respectively. It can be seen from these results that 

statistical results for GA-PLS model are superior to GA-KPLS method. Figure 2 shows the plot of the 

GA-KPLS predicted versus experimental values for log k of all of the molecules in the data set.  

Results of the L-M ANN model 

With the aim of improving the predictive performance of nonlinear QSRR model, L-M ANN modeling 

was performed. The networks were generated using the thirteen descriptors appearing in the GA-

PLS models as their inputs and log k as their output. For ANN generation, data set was separated into 

three groups: calibration and prediction (Training) and test sets. All molecules were randomly placed 
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Figure 1. Plots of predicted retention time against the experimental values by GA-PLS model 

 

Figure 2. Plots of predicted log K versus the experimental values by GA-KPLS model 
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in these sets. A three-layer network with a sigmoid transfer function was designed for each ANN. 

Before training the networks, the input and output values were normalized between -1 and 1. The 

network was then trained using the training set by the back propagation strategy for optimization of 

the weights and bias values. The proper number of nodes in the hidden layer was determined by 

training the network with different number of nodes in the hidden layer. The root-mean-square error 

(RMSE) value measures how good the outputs are in comparison with the target values. It should be 

noted that for evaluating the overfitting, the training of the network for the prediction of log k must 

stop when the RMSE of the prediction set begins to increase while RMSE of calibration set continues 

to decrease. Therefore, training of the network was stopped when overtraining began. All of the 

above mentioned steps were carried out using basic back propagation, conjugate gradient and 

Levenberge-Marquardt weight update functions. It was realized that the RMSE for the training and 

test sets are minimum when three neurons were selected in the hidden layer. Finally, the number of 

iterations was optimized with the optimum values for the variables. It was realized that after 16 

iterations, the RMSE for prediction set were minimum. The mean relative error and R2 for calibration, 

prediction and test sets were (0.959, 0.942, 0.903) and (4.49, 5.34, 7.12), respectively. Comparison 

between these values and other statistical parameter reveals the superiority of the L-M ANN model 

over other model. The key strength of neural networks, unlike regression analysis, is their ability to 

flexible mapping of the selected features by manipulating their functional dependence implicitly. The 

statistical parameters reveal the high predictive ability of L-M ANN model. The whole of these data 

clearly displays a significant improvement of the QSRR model consequent to nonlinear statistical 

treatment. Plot of predicted log k versus experimental log k values by L-M ANN for training and test 

sets are shown in Figure 3a and Figure 3b. Obviously, there is a close agreement between the 

experimental and predicted log k and the data represent a very low scattering around a straight line 

with respective slope and intercept close to one and zero. As can be seen in this section, the L-M ANN 

is more reproducible than other models for modeling the log k of compounds. 

Model validation and statistical parameters 

The accuracy of proposed models was illustrated using the evaluation techniques such as leave 

group out cross-validation (LGO-CV) procedure and validation through an external test set. In 

addition, chance correlation procedure is a useful method for investigating the accuracy of the 

resulted model by which one can make sure if the results were obtained by chance or not.  

Cross validation is a popular technique used to explore the reliability of statistical models. Based 

on this technique, a number of modified data sets are created by deleting in each case one or a small 
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Figure 3. Plot of predicted log k obtained by L-M ANN against the experimental values a) for 

training set and b) test set 
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group (Leave-some-out) of objects. For each data set, an input–output model is developed, based on 

the utilized modeling technique. Each model is evaluated, by measuring its accuracy in predicting the 

responses of the remaining data (The ones or group data that have not been utilized in the 

development of the model). In particular, the LGO-CV procedure was utilized in this study. A QSRR 

model was then constructed on the basis of this reduced data set and subsequently used to predict 

the removed data. This procedure was repeated until a complete set of predicted was obtained. The 

statistical significance of the screened model was judged by the correlation coefficient (R2). The 

predictive ability was evaluated by the cross validation coefficient (R2). The accuracy of cross 

validation results is extensively accepted in the literature considering the R2 value. In this sense, a 

high value of the statistical characteristic (R2 > 0.5) is considered as proof of the high predictive ability 

of the model. 

The data set should be divided into three new sub-data sets, one for calibration and prediction 

(Training), and the other one for testing. The calibration set was used for model generation. The 

prediction set was applied deal with overfitting of the network, whereas test set which its molecules 

have no role in model building was used for the evaluation of the predictive ability of the models for 

external set [21].  

In the other hand by means of training set, the best model is found and then, the prediction power 

of it is checked by test set, as an external data set. In this work, 60% of the database was used for 

calibration set, 20% for prediction set and 20% for test set [22], randomly (In each running program, 

from all 65 components, 39 components are in calibration set, 13 components are in prediction set 

and 13 components are in test set). 

The result clearly displays a significant improvement of the QSRR model consequent to non-linear 

statistical treatment and a substantial independence of model prediction from the structure of the 

test molecule. In the above analysis, the descriptive power of a given model has been measured by 

its ability to predict log k of unknown compounds.  

   For the constructed models, two general statistical parameters were selected to evaluate the 

prediction ability of the model for log k values. For this case, the predicted log k of each sample in the 

prediction step was compared with the experimental log k. The root mean square error of prediction 

(RMSE) is a measurement of the average difference between predicted and experimental values, at 

the prediction stage. The RMSE can be interpreted as the average prediction error, expressed in the 

same units as the original response values. The RMSEP was obtained using the following  formula: 
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The second statistical parameter was the relative error of prediction (RE) that shows the 

predictive ability of each component, and is calculated as: 
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Where yi is the experimental log k value of the anilines and phenols in the sample i, i
y


 represents the 

predicted log k value in the sample i, 
_

y  is the mean of experimental log k values in the prediction set 

and n is the total number of samples used in the test set  [23, 24]. 

 Conclusion 

 The GA-PLS, GA-KPLS and L-M ANN models was applied for the prediction of the log k values of 

ecotoxicity of anilines and phenols. High correlation coefficients and low prediction errors confirmed 

the good predictability of models. All methods seemed to be useful, although a comparison between 

these methods revealed the slight superiority of the L-M ANN over other models. Application of the 

developed model to a testing set of 13 compounds demonstrates that the new model is reliable with 

good predictive accuracy and simple formulation. The QSRR procedure allowed us to achieve a 

precise and relatively fast method for determination of log k of different series of these compounds 

to predict with sufficient accuracy the log k of new substituted compounds.  
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