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This study addresses the growing need for cost-effective and 
straightforward air quality monitoring solutions. We present the 
development and testing of an integrated sensor system combining DHT11, 
MQ-7, and GP2Y1010AU0F sensors for measuring temperature, humidity, 
CO gas, and PM10 levels. Our calibration tests demonstrate a sensor 
accuracy exceeding 96%, with individual accuracy rates for temperature, 
humidity, CO, and PM10 sensors at 98.42%, 96.81%, 96.95%, and 97.75%, 
respectively. These findings underscore the potential of our integrated 
sensor design in providing reliable and affordable air quality monitoring for 
community use. 
© 2024 by SPC (Sami Publishing Company), Asian Journal of Green 
Chemistry, Reproduction is permitted for noncommercial purposes. 

KEYWORDS  

Air Quality 
CO Gas 
Humidity 
Integrated Sensor 
PM10 

 

 

 

 

mailto:rahadianzmsiphd@fmipa.unp.ac.id
https://www.ajgreenchem.com/article_193303.html
http://www.ajgreenchem.com/
https://orcid.org/0000-0001-7948-2628
https://orcid.org/0009-0003-9754-6340
https://orcid.org/0009-0001-1791-1500
https://orcid.org/0000-0002-3740-3597
https://orcid.org/0000-0003-1775-7926
https://orcid.org/0000-0002-6933-7379
https://orcid.org/0000-0001-5091-0297


Development of an Integrated Air Quality …                                                                                          320 

 

Graphical Abstract 

 

 
Introduction 

The issue of air pollution today is escalating 

to a critically alarming state. Air pollution 

originates from a multitude of activities, 

encompassing industrial operations, 

transportation, office buildings, and residential 

areas [1, 2]. These activities constitute the 

primary sources of air pollutants released into 

the atmosphere. Moreover, various natural 

phenomena, including forest fires, volcanic 

eruptions, and the release of toxic gases, also 

significantly contribute to air pollution [3]. Such 

pollution adversely affects air quality, thereby 

negatively impacting human health [4-7]. 

This challenge has escalated into a global 

environmental concern. A World Health 

Organization (WHO) survey in 2002, covering 

1,600 cities across 91 countries, revealed that 

nearly 90% of urban inhabitants are exposed to 

air quality levels deemed unhealthy [8]. The 

WHO further reported that approximately half 

of the global population is exposed to pollution 

levels at least 2.5 times higher than the 

recommended air quality standards. This issue 

is particularly pronounced in developing 

countries, such as Indonesia, where rapid 

development driven by economic growth 

exacerbates pollution [9-11]. 

Respiratory health issues represent a 

significant societal burden. The WHO, in 2000, 

reported that respiratory diseases rank among 

the top five illnesses contributing to mortality, 

accounting for 17.4% of all deaths and 13.3% of 

all disability-adjusted life years (DALYs) [12]. 

Diseases such as lower respiratory infections 

[13-15], chronic obstructive pulmonary disease 

(COPD), tuberculosis, and lung cancer are 

among the leading causes of death globally [16-

18]. 

It is a well-acknowledged fact that urban 

residents spend a substantial portion of their 

time indoors. This demographic predominantly 

includes children, infants, the elderly, office 

employees, and individuals with chronic 

conditions. The concentration of pollutants in 

indoor environments, such as homes, 

workplaces, and public buildings, can 

significantly differ from outdoor pollution 

levels. Indoor air quality deteriorates not only 



A. Hartono et al.                                                                                                                                321 

 

 

due to the infiltration of external pollutants, but 

also from internal sources like cigarette smoke, 

cooking emissions, and the use of insect 

repellents. The importance of indoor air quality 

cannot be overstated, given its profound impact 

on respiratory health [19, 20]. The National 

Institute of Occupational Safety and Health 

(NIOSH) attributes indoor air quality issues to 

several factors, including inadequate ventilation 

(52%), indoor contaminant sources (16%), 

external pollutants (10%), microbial agents 

(5%), and building materials (4%), among 

others (3%) [21]. 

Various countries have adopted distinct 

indices to gauge ambient air quality, such as the 

Air Quality Index (AQI) in the United States and 

the Air Pollution Standard Index (ISPU) in 

Indonesia [22]. Air quality is a critical factor for 

human survival [23-26]. However, urban 

development and industrial expansion have led 

to deteriorating air quality, a pressing concern 

in urban areas [27-29]. In Indonesia, urban air 

quality has been on a decline over the past 

decade, with economic growth and urbanization 

being key contributors to this trend [30-32]. 

The demand for transportation and energy 

escalates with population growth, urban 

development, and lifestyle changes due to 

increased income levels. This surge in energy 

consumption further exacerbates air pollution, 

culminating in economic losses and elevated 

healthcare costs [33-36]. 

In response to these challenges, various air 

quality detection technologies continue to 

evolve [37]. Nevertheless, there is a pressing 

need for innovation in sensor system designs, 

considering the limitations and operational 

challenges associated with current market 

offerings. This scenario presents an opportunity 

for researchers to develop simpler, more user-

friendly, and cost-effective sensor designs. In 

this context, the integration of the DHT 11 

sensor, GP2Y1010AU0F dust sensor, and MQ-7 

sensor module represents a novel approach in 

the ongoing effort to monitor air quality. 

The advent of sophisticated air quality 

monitoring technologies over the past decade 

has significantly enhanced our capability to 

detect and analyze atmospheric pollutants. 

These technologies have evolved rapidly, driven 

by advancements in sensor accuracy, data 

processing algorithms, and the integration of 

Internet of Things (IoT) frameworks. Several 

studies and reviews highlighted the progress 

and challenges in this domain, offering insights 

into the state-of-the-art monitoring techniques 

and their implications for environmental health 

and policy [38]. 

Low-cost sensor networks have gained 

prominence for their potential to democratize 

air quality monitoring. These sensors, which 

can measure pollutants such as PM2.5, NO2, and 

O3, have been increasingly deployed in dense 

networks across urban areas. Despite their 

lower accuracy compared to regulatory-grade 

instruments, their affordability and flexibility 

allow for high-resolution spatial and temporal 

pollution mapping [38]. However, ensuring data 

quality and sensor calibration remains a 

challenge. 

Satellite Remote Sensing technologies have 

also advanced, providing comprehensive global 

coverage of air pollutants. The TROPOspheric 

Monitoring Instrument (TROPOMI) on the 

Sentinel-5 Precursor satellite, for example, 

offers unprecedented spatial resolution for 

monitoring nitrogen dioxide (NO2) and other 

gases. These satellite datasets, when combined 

with ground-based observations, enhance our 

understanding of pollution sources and 

transport mechanisms on a global scale [39]. 

IoT-based monitoring systems represent 

another leap forward, integrating sensors with 

cloud computing and data analytics to offer 

real-time air quality monitoring and forecasting. 

These systems leverage the power of machine 
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learning algorithms to predict air quality 

indices, enabling proactive management of 

pollution events. The scalability of IoT 

frameworks facilitates the deployment of 

multisensory networks that can monitor a wide 

array of environmental parameters beyond 

traditional pollutants, including temperature, 

humidity, and airborne particulates [40]. 

Emerging technologies and big data analytics 

are transforming air quality monitoring into a 

more dynamic and interactive field. 

Developments in artificial intelligence (AI) and 

machine learning (ML) are particularly 

noteworthy, as they improve the predictive 

capabilities of monitoring systems, enabling 

them to forecast pollution levels with greater 

accuracy. Big data analytics also play a crucial 

role in assimilating data from diverse sources, 

providing a holistic view of air quality and its 

health impacts [41]. 

In light of these advancements, the proposed 

system seeks to integrate the strengths of these 

diverse technologies to offer a comprehensive 

and accessible air quality monitoring solution. 

By combining the real-time data collection 

capabilities of IoT-based sensors with the 

analytical power of AI and big data, the system 

aims to provide accurate, actionable air quality 

information to communities and policymakers 

alike. 

Experimental  

 In the design process of our tool, we utilized 

various interconnected hardware components, 

which were programmed in accordance with 

the flowchart presented in Figure 1, ensuring 

the system operates as intended. 

 

Figure 1. Flowchart design for device software 
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The primary hardware includes an Arduino 

Uno, which facilitates the process of reading 

data from the DHT 11 sensor, the MQ-7 sensor, 

and the GP2Y1010AU0F dust sensor, thereby 

assessing the indoor air quality. Digital data 

transmission to an LCD screen is executed using 

a NodeMCU ESP8266. The comprehensive 

design, encompassing both hardware and 

software components, is depicted in Figure 2. 

The components illustrated in Figure 2 are 

detailed as follows: The Arduino Uno serves as 

the core controller, powering, and issuing 

commands to each sensor for air quality 

measurement within a room and forwarding 

sensor data to the NodeMCU ESP8266 via TX-RX 

pin connections. The DHT 11 sensor is 

employed for recording room temperature and 

humidity. Carbon Monoxide (CO) gas levels are 

measured using the MQ-7 sensor. To quantify 

Fine Particles measuring +10 microns (PM10) 

in the room, a GP2Y1010AU0F dust sensor, 

along with a 150Ω resistor and a 220µF 

capacitor, is utilized. Measurement data from 

each sensor are displayed on a 16 x 4 LCD, 

interfaced through an I2C module. 

For our data collection methodology, sensor 

accuracy was verified by juxtaposing the sensor 

data with that from standard, commercially 

available instruments. This involved calculating 

the mean measurement results, standard 

deviation, percentage error (absolute 

percentage error), mean absolute percentage 

error (MAPE), and sensor accuracy levels. The 

accuracy testing for each sensor involved the 

use of distinct commercial tools corresponding 

to the measured parameters, as outlined in 

Table 1. 

 

Figure 2. The overall circuit for device hardware 

Table 1. Commercial tools used for comparison 

No. Type of parameter Unit Commercial tool used 

1 Temperature °C Hygrometer HTC-1 

2 Humidity % Hygrometer HTC-1 

3 Fine Particles (PM10) μg/m³ Air Quality Detector TFT 

4 CO Gas ppm Kerui CO Detector 
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In the calibration process of our air quality 

monitoring system, we adopted a meticulous 

approach to ensure the accuracy and reliability 

of our sensor readings, drawing upon recent 

advancements and best practices in the field. 

The calibration involved comparing our 

system's sensor readings against those from 

selected commercial equipment known for their 

precision and reliability in measuring air 

pollutants. 

Rationale for equipment selection 

The selection of commercial equipment for 

comparison was based on their established 

accuracy, reliability, and widespread use in the 

scientific community for air quality monitoring. 

These instruments have been validated in 

various environmental conditions, offering a 

robust benchmark for calibrating our sensors. 

Recent studies have emphasized the importance 

of selecting well-established reference 

instruments for sensor calibration to ensure the 

quality and reliability of data collected by low-

cost sensors [42]. 

Calibration process 

We employed a spatial calibration model, as 

recent research suggests that spatial calibration 

can significantly improve the accuracy of sensor 

data by accounting for spatially varying 

relationships between sensor readings and 

actual pollutant concentrations. This approach 

allows for the correction of biases and 

enhancement of data reliability across different 

locations, making it possible to estimate air 

quality levels with greater precision [43]. 

Furthermore, the methodology emphasizes the 

importance of considering environmental 

variables such as temperature and humidity, 

which can affect sensor performance, and 

recommends quantile mapping as an effective 

calibration technique for mobile measurements, 

retaining the spatial characteristics of the 

measurements and ensuring data accuracy 

across different conditions [44]. 

By integrating these advanced calibration 

techniques and carefully selecting reference 

equipment, we aimed to enhance the accuracy 

and reliability of our air quality monitoring 

system. This detailed calibration process, 

grounded in the latest research and best 

practices, ensures that our system can provide 

valuable and trustworthy data for air quality 

assessment. 

Results and Discussion  

Sensor design 

The sensor device was designed with compact 

dimensions of 10x10x12 cm, enabling it to 

effectively assess and provide air quality 

recommendations for indoor environments, as 

depicted in Figure 3. 

Sensor calibration 

Calibration tests for the sensors were 

conducted alongside standard sensors to ensure 

accuracy. Measurements were taken repeatedly 

at a 10 cm distance from the test object. The 

calibration results demonstrated high accuracy 

levels across the sensors: temperature, CO, and 

PM10 sensors achieved accuracy rates of 

99.37%, 96.83%, and 97.77%, respectively. 

Sensor test results 

The DHT 11 sensor was compared against a 

standard HCT 1 Hygrometer sensor across 

varying distances (5 cm to 25 cm) to test 

temperature measurement accuracy. The 

results, illustrated in Figure 4, show a high 

degree of alignment between the two sensor 

outputs, confirming a sensor accuracy of 

98.42% for temperature measurements. 
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Figure 3. Sensor circuit: (a) outside view and (b) inside view 

 

Figure 4. Temperature test results plot graph 

 

Figure 5. Humidity test results plot graph 
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Humidity measurements, shown in Figure 5, 

further corroborate the sensor's reliability, with 

a nearly identical trend observed between the 

DHT 11 sensor and the standard sensor, 

yielding an accuracy of 96.81%. 

CO gas testing involved comparing the MQ-7 

sensor with a Kerui detector, using vehicle 

exhaust as the CO source at a 15 cm distance. 

Figure 6 presents the test results, where the 

MQ-7 sensor readings closely match those of the 

Kerui detector, indicating a sensor accuracy of 

96.95%. 

 

Figure 6. CO levels measurement plot graph 

 

Figure 7. PM10 level test results plot graph 

The GP2Y1010AU0F dust sensor's ability to 

detect PM10 levels was evaluated by exposing it 

to cigarette smoke alongside a TFT Air Quality 

tool. The comparative results, depicted in Figure 

7, show a consistent reading between both 

sensors, affirming a sensor accuracy of 97.75%. 

The paper presents a comprehensive 

development and testing of an integrated air 

quality monitoring system, showcasing a 

significant advancement in sensor technology 

for environmental health. By achieving over 

96% accuracy in measuring temperature, 

humidity, CO gas, and PM10 levels, the study 

underlines the potential for deploying cost-

effective and reliable air quality monitoring 

tools in community settings. This high level of 

accuracy demonstrates the effectiveness of the 

integrated sensor design, which combines 

DHT11, MQ-7, and GP2Y1010AU0F sensors, for 

precise air quality assessment. 

This study addresses the urgent global need 

for accessible air quality monitoring solutions, 

especially in light of WHO reports highlighting 

widespread exposure to unhealthy air quality 

levels. The integration of the sensors with a 

microcontroller reflects a promising approach 

towards creating user-friendly devices capable 

of providing accurate environmental data, 

which is crucial for public health initiatives and 

policy-making. This development is particularly 

relevant for rapidly urbanizing regions where 

traditional monitoring infrastructure may be 

lacking or insufficient. 

The study's findings advocate for the broader 

adoption of integrated sensor systems as a 

viable solution to the air quality monitoring 

challenges posed by urbanization and industrial 

activity. By offering a detailed analysis of sensor 

accuracy and calibration methods, the paper 

contributes valuable insights to the field of 

environmental monitoring technology. It paves 

the way for further research into scalable,  

affordable air quality monitoring systems that 
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could significantly impact public health and 

environmental policy. 

The study marks a pivotal advancement in 

air quality monitoring, showcasing precise 

measurement capabilities across vital 

environmental factors. The integrated sensor 

system's high accuracy in gauging temperature, 

humidity, CO, and PM10 positions it as a 

dependable tool for indoor air quality 

assessment, pivotal for health. Its precision 

highlights its potential to bridge existing gaps in 

monitoring practices, providing an affordable 

and community-friendly solution. 

Enhanced by rigorous calibration and 

testing, the study accentuates the sensor 

system's consistency and reliability in data 

production. Its alignment with standard tools 

under varied conditions confirms its 

trustworthiness for precise environmental 

surveillance, making it instrumental in early 

pollution detection and health risk 

management. 

These insights herald a shift towards 

proactive public health strategies and policy 

development. The system's real-time air quality 

monitoring capability informs better pollution 

control and health advisory decisions. 

Advocating for its widespread adoption, the 

study suggests a scalable approach that could 

revolutionize air quality monitoring, aiming to 

mitigate air pollution's health impacts globally. 

Recent advances in air quality monitoring 

technology underscore the integration of 

Internet of Things (IoT) devices, advanced 

sensor arrays, and machine learning algorithms 

to deliver real-time, precise, and comprehensive 

data on a broad spectrum of pollutants [45-47]. 

This movement towards Smart Environment 

Monitoring (SEM) systems, which employ 

networks of interconnected sensors, aims to 

scrutinize air quality, water purity, radiation 

levels, and agricultural health comprehensively 

[48-50]. These systems are designed to furnish 

actionable insights for both governmental 

bodies and the general populace, facilitating 

swift actions in the face of environmental 

hazards and contamination. 

This study contributes significantly to this 

domain by unveiling an integrated air quality 

monitoring system that specifically targets 

temperature, humidity, carbon monoxide (CO) 

gas, and PM10 particulate levels. By employing 

specialized sensors- DHT11 for temperature 

and humidity, MQ-7 for CO gas, and 

GP2Y1010AU0F for PM10 levels- and achieving 

high accuracy, this study stands out as a crucial 

tool for community-level environmental 

surveillance. Notably, its focus on cost-

effectiveness and precision mirrors the global 

drive towards developing accessible and 

dependable environmental monitoring 

solutions. 

On a broader scale, research is pivoting 

towards more holistic and advanced systems 

that harness the power of IoT and machine 

learning not just for gathering data but also for 

predictive analytics, automatic response 

frameworks, and integration into 

comprehensive city or region-wide 

environmental management systems. These 

avant-garde systems aspire to encompass a 

more extensive array of contaminants, including 

fine particulate matter (PM2.5), nitrogen oxides 

(NOx), and volatile organic compounds (VOCs), 

and are tailored to operate across varied 

settings, from bustling urban landscapes to 

secluded locales. This paper lays foundational 

groundwork within this rapidly evolving sector, 

underscoring the critical role of focused, high-

precision monitoring solutions that are scalable 

and integrable into broader smart city 

strategies. 

In essence, while the specific concentration 

and technological methodology of this study 

mark a pivotal advancement towards efficacious 

air quality monitoring, the arena is swiftly 
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transitioning towards more interconnected, 

intelligent, and all-encompassing monitoring 

solutions. These innovative solutions aim not 

only to amass data, but also to interpret and 

utilize this information in ways that markedly 

enhance our mitigation strategies against 

environmental adversities.  

Analysis of potential errors and limitations 

of sensor systems, including the impact of 

environmental factors on sensor performance 

and measures to mitigate such impacts, the 

following points can be integrated based on the 

latest findings:  

Environmental and sensor limitations 

Research has highlighted that environmental 

factors such as the inherent optical properties 

of water, bathymetry, sun height, wind speed, 

and sensor noise characteristics can 

significantly impact sensor performance. A 

model developed to analyze these impacts 

shows that benthic-type spectral variations and 

sub-pixel mixing are the main limiting factors 

for mapping purposes, while instrument noise 

levels are relatively small [51].  

Wireless sensor network (WSN) challenges 

In the context of IoT applications, WSNs face 

challenges related to communication security, 

data bias due to environmental conditions such 

as high humidity, and the need for accurate 

calibration methodologies to ensure data 

reliability. New approaches involving true 

random number generators based on ADC 

nonlinear effects and chaos maps have been 

proposed to address some of these challenges, 

emphasizing the importance of robust 

calibration and data security protocols [52]. 

Mitigation strategies 

To mitigate the impact of environmental 

factors on sensor performance, several 

strategies can be implemented. This includes 

using spatial calibration models to correct bias 

and increase data reliability at multiple 

locations, adjusting calibration methodology 

based on environmental conditions, and 

incorporating quantile mapping for mobile 

measurements to maintain the spatial 

characteristics of measurements. 

The need for further validation of air quality 

sensors in diverse environmental conditions to 

strengthen findings has been addressed in 

several recent studies. For example, a study 

described in [53] highlighted the deployment of 

AirSensEUR sensor systems across multiple 

cities, capturing a broad range of meteorological 

conditions and pollutant concentrations. This 

study emphasized the importance of evaluating 

sensor performance across different traffic 

impacts and spatial variability within urban 

environments, which is critical for assessing 

sensor accuracy and reliability in real-world 

conditions [53]. 

Another study published in [54] focused on 

field tests and validation of particulate matter 

measurements using low-cost sensor nodes. 

The study involved mounting sensor-boxes on 

utility vehicles for mobile air quality monitoring 

in Central Switzerland, comparing the data 

collected to a regional air quality monitoring 

network. This approach allowed for the 

assessment of sensor performance in varying 

environmental conditions, including different 

levels of pollutants and meteorological 

influences. The study also delved into data 

filtering methods to enhance the quality of the 

sensor data, showing the potential for low-cost 

sensors to deliver coherent data across a region 

[54]. 

These studies underscore the importance of 

validating air quality sensors in diverse 

environmental settings to ensure the accuracy 

and reliability of the data they produce. By 

conducting extensive field tests and comparing 
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sensor data to established reference data, 

researchers can identify and correct for factors 

that may affect sensor performance, such as 

environmental conditions and sensor drift. This 

process is crucial for the effective use of low-

cost sensors in air quality monitoring, especially 

in urban areas where pollutant concentrations 

and environmental conditions can vary 

significantly. 

Regarding the long-term stability and 

maintenance requirements of the air quality 

sensor system. The first study, as detailed in 

[55], focuses on the calibration process of low-

cost particle sensors for indoor air pollution 

health studies. It involved repeated calibration 

in a controlled environment using cigarette 

smoke and HEPA-filtered air to develop 

calibration curves for Airbeam sensors. This 

rigorous calibration process, conducted over a 

two-year period, underscores the necessity of 

periodic recalibration to maintain sensor 

accuracy over time. The study also highlighted 

the potential challenges in maintaining sensor 

performance, including equipment failures due 

to environmental conditions like humidity and 

temperature extremes, as well as other factors 

such as insect infestations [55]. 

Another important study published in [56] 

examines the performance of low-cost air 

quality sensors over a 13-month period in 

diverse environments in Australia and China. 

This study evaluated parameters such as inter-

variability, accuracy, and the effect of 

environmental conditions on sensor 

performance. It found that while the sensors 

showed good long-term stability and high 

correlation in measurements of PM2.5 and CO, 

their accuracy and performance could be 

affected by extreme temperatures and relative 

humidity levels. In addition, the sensors' 

sensitivity varied across different types of 

aerosols, highlighting the importance of 

considering the specific environmental 

conditions and aerosol compositions when 

deploying these sensors for long-term 

monitoring [56]. 

Incorporating considerations of user 

interface and experience for deploying air 

quality sensors in community settings could 

indeed enhance the impact and usability of such 

technologies. Two studies provide insights into 

this area, emphasizing the need for intuitive, 

accessible platforms for data analysis and 

visualization, as well as thoughtful deployment 

strategies that address local contexts and 

resource constraints. 

The first study, published in [57], outlines 

the development of an open-source framework 

for citizen-centric environmental monitoring 

and data analysis. This framework includes the 

Soc-IoT and exploreR, tools designed to reduce 

technical barriers and facilitate data analysis 

and visualization by both experts and non-

experts. The exploreR application, developed 

using the RShiny package, offers an intuitive 

GUI that guides users through the data analysis 

process, from input and preprocessing to 

advanced analysis and forecasting. This 

approach underscores the importance of 

creating user-friendly interfaces that can 

engage diverse community members in 

environmental monitoring efforts [57]. 

The second study, featured in [58], focuses 

on design considerations for a distributed low-

cost air quality sensing system tailored for 

urban environments in low-resource settings. 

This study highlights the AirQo system, a 

custom environmental sensing and 

management system designed for African cities. 

The AirQo platform provides tools for 

calibration, data access, and analytics, 

supporting usage among policymakers and 

citizens. Case studies from African cities using 

the system for education, awareness, and policy 

highlight the system's role in filling data gaps in 

urban air quality monitoring. This study 
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emphasizes the importance of considering local 

infrastructure, environmental conditions, and 

the needs of communities when deploying 

technology-driven solutions in low-resource 

settings [58]. 

These studies collectively illustrate the 

crucial role of user interface and experience in 

the successful deployment of air quality sensors 

in community settings. By focusing on the ease 

of use, accessibility, and local context, 

environmental monitoring technologies can 

better serve and engage communities, leading 

to more effective and sustainable solutions for 

addressing air quality issues. 

Conclusion 

The development of a sensor system 

incorporating DHT11, MQ-7, and 

GP2Y1010AU0F sensors, controlled by a 

microcontroller, has successfully demonstrated 

high accuracy in monitoring temperature, 

humidity, CO, and PM10, with rates of 98.42%, 

96.81%, 96.95%, and 97.75% respectively. This 

underlines the system's reliability in air quality 

assessment. Future research should explore 

integrating IoT for real-time data transmission 

and machine learning algorithms for predictive 

analytics, enhancing decision-making 

capabilities in environmental monitoring. This 

integration could offer adaptive responses to 

changing air quality conditions, optimizing 

monitoring strategies. 
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