CiteScore: 1.8     h-index: 21

Document Type : Original Research Article


1 Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran

2 Iranian Academic Center for Education, Culture & Research (ACECR), Zanjan Branch, Zanjan, Iran

3 Department of Physics, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Irana


Mechanism of decarboxylation reaction includes, metal catalyst with Ag+, a radical path and oxidative decarboxylation have been investigated. The calculations have been done in two different B3LYP/LANL2DZ, and WB97XD/DGDZVP/ DEF2DTZV levels. Four structures have been proposed for oxidized benzoic acid. Among four possible oxidative structures only one structure with 62.99 kcal.mol-1 activation energy could lead to the decarboxylative product. Silver catalyzed decarboxylation leads to products in one step. The activation energy for this path have been determined to be 43.31 kcal.mol­-1. The radical path for decarboxylation needs 16.93 kcal.mol-1 although for radical creation it needs at least 100.12 kcal.mol-1 energy.

Graphical Abstract

Density functional theory study of benzoic acid decarboxylation


Main Subjects

[1]. Seo S., Slater M., Greaney M.F., Org. Lett., 2012, 10:2650
[2]. Myers A.G., Tanaka D., Mannion M.R. J. Am. Chem. Soc., 2002, 38:11250
[3]. Luo H.Q., Dong W., Loh T.P. Tetrahedron Lett., 2013, 22:2833
[4]. Parsharamulu T., Reddy P.V., Likhar P.R., Kantam M.L. Tetrahedron, 2015, 13:1975
[5]. Sun Z.M., Zhao P. Angew. Chem. Int. Ed, 2009, 36:6726
[6]. Li M., Hoover J.M. Chem. Commun., 2016, 56:8733
[7]. Dai Q., Li P., Ma N., Hu C. Organic lett., 2016, 21:5560
[8]. Lindh J., Sjöberg P.J., Larhed M. Angew. Chem. Int. Ed., 2010, 42:7733
[9]. Seo S., Taylor J.B. Greaney. Chem. Commun. 2012, 66:8270
[10]. Dupuy S., Nolan S.P. Chem. Eur., 2013, 42:14034
[11]. Noble A., McCarver S.J., MacMillan D.W. J. Am. Chem. Soc., 2015, 2:624
[12]. Sun Z.M., Zhang J., Zhao P. Org. lett., 2010, 5:992
[13]. Baruah D., Konwar D. Catal. Commun., 2015, 69:68
[14]. Keumi T., Morita T., Inui Y., Teshima N., Kitajima H. Synthesis, 1985, 10:979
[15]. Maity H.S., Misra K., Mahata T., Nag A. RSC Adv., 2016, 29:24446
[16]. Miyake M., Shimizu M., Tsuji K., Ikeda. Org. Process Res. Dev., 2015, 1:86
[17]. Telvekar V.N., Sasane K.A. Synlett, 2010, 18:2778
[18]. Cohen T., Schambach R.A. J. Am. Chem. Soc., 1970, 10:3189
[19]. Anderson J.M., Kochi J.K. J. Am. Chem. Soc., 1970, 6:1651
[20]. Zhang S.L., Fu Y., Shang R., Guo Q.X., Liu L. J. Am. Chem. Soc., 2009, 2:638
[21]. Xue L., Su W., Lin Z. Dalton Trans., 2011, 44:11926
[22]. Pople J.A., Gill P.M., Johnson B.G. Chem. Phys. Lett., 1992, 6:557
[23]. Johnson B.G., Fisch M.J. J. Chem. Phys., 1994, 10:7429
[24]. Stratmann R.E., Burant J.C., Scuseria G.E., Frisch M.J. J. Chem. Phys., 1997, 24:10175
[25]. Hay P.J., Wadt W.R. J. Chem. Phys., 1985, 1:270
[26]. Zhang J., Shan C., Zhang T., Song J., Liu T., Lan Y. Coord. Chem. Rev., 2019, 382:69
[27]. Jalbout A., Nazari F., Turker L. Journal of Molecular Structure: THEOCHEM, 2004, 1-3:1