CiteScore: 1.8     h-index: 21

Document Type : Short Communication


1 Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia

2 Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA

3 Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA


Optimized desublimation of 2,4-diaminotoluene (4-methylbenzene-1,3-diamine) formed its ultrapure crystals. The collected crystals were analyzed by X-ray crystallography and then directly consumed in a condensation reaction with paraformaldehyde that resulted in the formation of Hünlich’s base. The subsequent one-pot diazotization and coupling reactions produced a new bisazo analog of Tröger’s base in the maximum possible compliance with the principles of green chemistry. The obtained bisazo product was found to be a durable and affordable building block suitable for use in the design of light-driven molecular machines.

Graphical Abstract

A green one-pot shortcut to light switching Tröger base analogs


Main Subjects

[3]. Madhav N.V.S., Singh B. Asian J. Nanosci. Mater., 2019, 2:314
[4]. Mirjalili B.B.F., Dehghani Tafti M. Sci. Iran., 2017, 24:3014
[5]. Goswami S., Hazra A., Jana S. J. Heterocycl. Chem., 2009, 46:861
[6]. de Andrade V.S.C., de Mattos M.C.S. Synthesis, 2018, 50:4867
[7]. Rezaee Nezhad E., Tahmasebi R. Asian. J. Green Chem., 2019, 3:34
[8]. Khazaei A., Zolfigol M.A., Moosavi-Zare A.R., Zare A., Ghaemi E., Khakyzadeh V., Asgari Z., Hasaninejad A. Sci. Iran., 2011, 18:1365
[9]. Wang Z., Song T., Yang Y. Synlett, 2019, 30:319
[10]. Gall' A.A., Sil'nikov V.N., Shishkin G.V. Chem. Heterocycl. Compound., 1988, 24:682
[11]. Zhang W.T., Chen D.S., Li C., Wang X.S. Synthesis, 2015, 47:562
[12]. Khazaei A., Kazem-Rostami M., Zare A., Moosavi-Zare A.R., Sadeghpour M., Afkhami A. J. Appl. Polym. Sci., 2013, 129:3439
[13]. Heydari S., Habibi D. Polyhedron, 2018, 154:138
[14]. Zhang X., Li S., Zhu X., Jiang X., Kong X.Z. React. Funct. Polym., 2018, 133:143
[15]. Rigol S., Beyer L., Hennig L., Sieler J., Giannis A. Org. Lett., 2013, 15:1418
[16]. Patel H.A., Selberg J., Salah D., Chen H., Liao Y., Mohan Nalluri S.K., Farha O.K., Snurr R.Q., Rolandi M., Stoddart J.F. ACS Appl. Mater. Interfaces, 2018, 10:25303
[17]. Kazem-Rostami M. Synthesis, 2017, 49:1214
[18]. Kazem-Rostami M. New J. Chem., 2019, 43:7751
[19]. Kazem-Rostami M. J. Therm. Anal. Calorim., 2019,
[20]. Zhuge X., Liu R., Li J., Zhang J., Li Y., Yuan C. Dyes Pigm., 2019, 171:107678
[21]. Kazem-Rostami M. Synlett, 2017, 28:1641
[22]. Kazem-Rostami M., Akhmedov N.G., Faramarzi S. J. Mol. Struct., 2019, 1178:538
[23]. Kazem-Rostami M., Moghanian A. Org. Chem. Front., 2017, 4:224
[24]. Parr R.G. Density Functional Theory of Atoms and Molecules. In Horizons of Quantum Chemistry; Springer: Netherlands, 1980; p 5-15
[26]. Wagner E.C. J. Org. Chem., 1954, 19:1862
[28]. Chen J., Leung F.K., Stuart M.C.A., Kajitani T., Fukushima T., van der Giessen E., Feringa B.L. Nat. Chem., 2017, 10:132
[29]. Stoddart J.F. Angew. Chem. Int. Ed., 2017, 56:11094