Document Type: Original Research Article

Authors

1 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2 Catalysis Science and Technology Research Centre (PutraCAT), Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

10.33945/SAMI/ajgc.2019.190811.1163

Abstract

To make the biodiesel competitive with petroleum diesel, cheap and abundant materials can be utilized as a catalyst and waste oils can be used as resources. In this research study, the potential of waste chicken eggshells was used as a catalyst to produce biodiesel from the rendered chicken fats (RCF). The calcium methoxide catalyst was prepared by calcining the waste eggshells at 900 °C in air for 4 h followed by treatment with methanol under reflux condition. The physico-chemical properties of the prepared catalyst were characterized using the X-ray diffraction (XRD) analysis, Brunner-Emmet-Teller (BET), field emission scanning electron microscopy (FE-SEM), and temperature programmed desorption of carbon dioxide (CO2-TPD). Two-step process including, esterification and transesterification were employed to convert the RCF to fatty acid methyl ester (FAME). Esterification pretreatment with ferric sulfate successfully reduced 75.1% of the FFA content in RCF which enables high biodiesel production. Under the optimal reaction condition, the highest conversion of biodiesel was found to be 90.04% at 1:15 oil to methanol molar ratio, 3 wt% catalyst loading, and 2 h reaction time at 65 °C. The catalyst was successfully used for 4 consecutive cycles with less than 2 mg/kg of Ca was detected in the product.

Graphical Abstract

Keywords

[1]. Sani Y.M., Daud W.M.A.W., Abdul Aziz A.R. Appl. Catal. A., 2014, 470:140

[2]. Liu X., Piao X., Wang Y., Zhu S., He H. Fuel, 2008, 87:1076

[3]. Alptekin E., Canaki M. Fuel, 2011, 90:2630

[4]. Shokuhi Rad A., Hoseini Nia M, Ardestani F., Nayebzadeh H. Waste Biomass Valor., 2018, 9:591

[5]. Vyas A.P., Subramanyam N., Patel P.A. Fuel, 2000, 88:625

[6]. Aqliliriana C.M., Muhamad E.N., Irmawati R. Int. J. Sci. Technol. Res., 2015, 4:168

[7]. Viriya-empikul N., Krasae P., Puttasawat B., Yoosuk B., Chollacoop N., Faungnawakij K. Bioresour. Technol., 2010, 101:3765

[8]. Wei Z., Xu C., Li B. Bioresour. Technol., 2009, 100:2883

[9]. Khemthong P., Luadthong C., Nualpaeng W., Changsuwan P., Tongprem P., Viriya-empikul N., Faungnawakij K. Catal. Today, 2012, 190:112

[10]. Kouzu M., Kasuno T., Tajika M., Yamanaka S., Hidaka J. Appl. Catal. A., 2008, 334:357

[11]. Taufiq-Yap Y.H., Lee H.V., Yunus R., Juan J.C. Chem. Eng. J., 2011, 178:342

[12]. Arzamendi G., Arguinarena E., Campo I., Zabala S., Gandian L.M. Catal. Today, 2008, 133:305

[13] .Abraham J., Saravanakumar V.R., Kulkarni V.V., Sivakumar K., Singh A.P., Visha P. J. Am. Oil Chem. Soc., 2014, 91:133

[14]. Refaat A.A., Attia N.K., Sibak H.A., El Sheltawy S.T., Eldiwani G.I. Int. J. Environ. Sci. Tech., 2008, 5:75

[15]. Gupta A.R., Yadav S.V., Rathod A.K. Fuel, 2015, 158:800

[16]. Olutoye M.A., Hameed B.H. Bioresour. Technol., 2013, 132:103

[17]. Leung D.Y.C., Wu X., Leung M.K.H. Appl. Energy, 2010, 87:1083

[18]. Kusuma R.I., Hadinoto J.P., Ayucitra A., Soetaredjo F.E., Ismadji S. Appl. Clay Sci., 2013, 74:121

[19]. Sirisomboonchai S., Abuduwayiti M., Guan G., Samarat C., Abliz S., Abudula A. Energy Convers. Manage., 2015, 95:242

[20]. Syazwani O.N., Rashid U., Taufiq-Yap Y.H. Energy Convers. Manage., 2015, 101:749

[21]. Boro J., Thakur A.J., Deka D. Fuel Process. Technol., 2012, 16:904