Document Type: Review Article

Authors

1 Department of Chemistry, University of Ibadan, Ibadan, Nigeria

2 CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China

3 Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria

4 Department of Chemistry, Faculty of Physical Sciences, University of Ilorin, Ilorin, Nigeria

5 CAS Key Laboratory of Green Printing, CAS Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China

6 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China

Abstract

Lignocellulosic biomass contains polymers of cellulose, hemicellulose, and lignin, bound together in a complex structure. Many physicochemical structural and compositional factors hinder the hydrolysis of cellulose present in biomass to sugars and other organic compounds that can later be converted to fuels. These factors hindering access to sugars contained in lignocelluloses are summed up as “recalcitrance”. As a result, pretreatment is required to allow liberal access to the full contents of lignocellulosic biomass. Production of value added co-products along with biofuels through integrated biorefinery processes create the need for selectivity during pretreatment. Pretreatment is an important tool for biomass-to-biofuels conversion processes and is the subject of this review article. The major target of pretreatment is to make the cellulose accessible to hydrolysis for conversion to fuels. Various pretreatment techniques change the physical and chemical structure of the lignocellulosic biomass and enhance the degree of hydrolysis. During the past few years a large number of pretreatment methods have been developed, including alkali treatment, ammonia explosion, and others. Many methods have been shown to result in high sugar yields, for lignocellulosic biomasses such as woods, grasses, corn, rice straw, etc. In this review, we discuss the ionic liquids (ILs) pretreatment method in biorefinery and the recent literature that has reported on the use of these so called green solvents for pretreatment of various lignocellulosic biomasses, ionic liquids have recently become very popular solvents for the dissolution of biomass due to their unique features as compared to conventional solvents.

Graphical Abstract

Keywords

Main Subjects

[1]. Wang H., Block L.E., Rogers R.D. The Royal Society of Chemistry, 2014, 1:1

[2]. Luque R., Herrero-Davila L., Campelo J.M., Clark J.H., Hidalgo J.M., Luna D., Marinas J.M., Romero A.A. Energy Environ. Sci., 2008, 1:542

[3]. Henry R.J. Plant Biotechnol. J., 2010, 8:288

[4]. Dudley B. BP Statistical Review of World Energy, 2015, 64:1

[5]. Van Putten R.J., van der Waal J.C., de Jong E., Rasrendra C.B., Heeres H.J., de Vries J.G. Chem. Rev., 2013, 113:1499

[6]. Baskar C., Baskar S., Dhillion R.S. Biotech.Chem. and Mat. Sci, New York, NY: Springer. 2012, 1:1

[7]. Bozell J.J. Clean, 2008, 36:641

[8]. Brandt A., Gräsvik J., Hallett J.P., Welton T. Green Chem., 2013, 15:550

[9]. Hallett J.P., Welton T. Chem. Rev., 2011, 111:3508

[10]. Sun N., Rahman M., Qin Y., Maxim M.L., Rodríguez H., Rogers R.D. Green Chem., 2009, 11:646

[11]. Lee D., Yu A.H.C., Wong K.K.Y., Saddler J.R. Appl. Biochem. Biotechnol., 1994, 45:407

[12]. Lynd L.R., Elander R.T., Wyman C.E. Appl. Biochem. Biotechnol., 1996, 57-58:741

[13]. Mosier N., Hendrickson R., Ho N., Sedlak M., Ladisch M.R. Bioresource Technol., 2005, 96:1986

[14]. Chandra R.P., Bura R., Mabee W.E., Berlin A., Pan X., Saddler J.N. Adv. Biochem. Eng. Biotechnol., 2007, 108:67

[15]. Himmel M.E., Ding S.Y., Johnson D.K., Adney W.S., Nimlos M.R., Brady J.W., Foust T.D. Science, 2007, 315:804

[16]. McCann M.C., Carpita N.C. J. Exp. Bot., 2015, 66:4109

[17]. Yoo C.G., Yang Y., Pu Y., Meng X., Muchero W., Yee K.L., Thompson O.A., Rodriguez M., Bali G., Engle N.L., Lindquist E., Singan V., Schmutz J., DiFazio S.P., Tschaplinski T.J., Tuskan G.A., Chen J.G., Davison B., Ragauskas A.J. Green Chem., 2017, 19:5467

[18]. Gao D., Haarmeyer C., Balan V., Whitehead T.A., Dale B.E., Chundawat S.P. Biotechnol. Biofuels, 2014, 7:1

[19]. Kumar L., Arantes V., Chandra R., Saddler J. Bioresour. Technol., 2012, 103:201

[20]. Palmqvist E., Hahn-Hägerdal B. Bioresour. Technol., 2000, 74:25

[21]. Ragauskas A.J., Beckham G.T., Biddy M.J., Chandra R., Chen F., Davis M.F., Davison B.H., Dixon R.A., Gilna P., Keller M., Langan P., Naskar A.K., Saddler J.N., Tschaplinski T.J., Tuskan G.A., Wyman C.E. Science, 2014, 344:1246843

[22]. Anastas P.T., Warner J.C. Oxford University Press: New York, 1998, 1:30

[23]. Verdía P., Brandt A., Hallett J.P., Ray M.J., Welton T. Green Chem., 2014, 16:1617

[24]. Hou Q., Li W., Ju M., Liu L., Chen Y., Yang Q., Wang J. Carbohydr. Polym., 2015, 133:517

[25]. Li W.Z., Ju M.T., Wang Y.N., Liu L., Jiang Y. Carbohydr. Polym., 2013, 92:228

[26]. Anastas P.T., Kirchhoff M.M. Acc. Chem. Res., 2002, 35:686

[27]. Ritter S.K. Plant Biochem., 2008, 86:15

[28]. Liu Y.R., Thomsen K., Nie Y., Zhang S.J., Meyer A.S. Green Chem., 2016, 6246

[29]. Giummarella N., Lawoko M. ACS Sustainable Chem. Eng., 2016, 4:5319

[30]. Lawoko M., Henriksson G., Gellerstedt G. Biomacromolecules, 2005, 6:3467

[31]. Fort D.A., Remsing R.C., Swatloski R.P., Moyna P., Moyna G., Rogers R.D. Green Chem., 2007, 9:63

[32]. Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. J. Am. Chem. Soc., 2002, 124:4974

[33]. Da Costa Lopes A.M., Roseiro L.B., Bogel-Lukasik. Royal Society of Chemistry: London, UK, 2016, 5:121

[34]. Da Costa Lopes A.M., Bogel-Lukasik R. Chem Sus Chem., 2015, 8:947

[35].Knudsen K.G., Cooper B.H., Topsoe H. Appl. Catal. A: General, 1999, 189:205

[36].Seddon K.R., Boghosian S. Eds. Patras, Greece, 1999, 1:131

[37].Marszall M.P., Mrkuszewski M.J., Kaliszan R. J. Pharm. Bio. Anal., 2006, 41:329

[38]. Plechkova N.V., Seddon K.R. Chem. Soc. Rev., 2008, 37:123

[39]. Wasserscheid P., Keim W. Angew. Chem. Int. Ed., 2000, 39:3772

[40]. Wilkes J.S., Levisky J.A., Wilson R.A., Hussey C.L. Inorg. Chem., 1982, 21:1263

[41]. Holbrey J.D., Reichert W.M., Swatloski R.P., Broker G.A., Pitner W.R., Seddon K.R., Rogers R.D. Green Chem., 2002, 4:407

[42]. Suarez P.A.Z., Dullius J.E.L., Einloft S., Souza R.F.D., Dupont J. Polyhedron, 1996, 15:1217

[43]. Cassol C.C., Eberlin G., Ferrera B., Dupont J. Adv. Synth. Catal., 2006, 348:243

[44]. Fort D.A., Remsing R.C., Swatloski R.P., Moyna P., Moyna G., Rogers R.D. Green Chem., 2007, 9:63

[45]. Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. J. Am.Chem. Soc., 2002, 124:4974

[46]. Lee S.H., Doherty T.V., Linhardt R.J., Dordick J.S. Biotechnol. Bioeng., 2009, 102:1368

[47]. Bhaumik P., Dhepe P.L. Royal Society of Chemistry, 2015, 1:1

[48]. Kosan B., Michels C., Meister F. Cellulose, 2008, 15:59

[49]. Wendler F., Todi L.N., Meister F. Thermochim. Acta, 2012, 528:76

[50]. Payal R.S., Bejagam K.K., Mondal A., Balasubramanian S. J. Phys. Chem. B, 2015, 119:1654

[51]. Gericke M., Schlufter K., Liebert T., Heinze T., Budtova T. Biomacromolecules, 2009, 10:1188

[52]. Sescousse R., Le K.A., Ries M.E., Budtova T. J. Phys. Chem. B, 2010, 114:7222

[53]. Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. J. Am. Chem. Soc., 2002, 124:4974

[54]. Freire M.G., Teles A.R.R., Ferreira R.A.S., Carlos L.D., Lopes-da-Silva J.A., Coutinho J.A.P. Green Chem., 2011, 13:3173

[55]. Dadi A.P., Varanasi S., Schall C.A. Biotechnol. Bioeng., 2006, 95:904

[56]. Zhao H., Jones C.I.L., Baker G.A., Xia S., Olubajo O., Person V.N. J. Biotechnol., 2009, 139:47

[57]. Ohira K., Abe Y., Kawatsura M., Suzuki K., Mizuno M., Amano Y., Itoh T. Chem Sus Chem, 2012, 5:388

[58]. Gericke M., Liebert T., El Seoud O.A., Heinze T. Macromol. Mater. Eng., 2011, 296:483

[59]. Xu A., Wang J., Wang H. Green Chem., 2010, 12:268

[60]. Fukaya Y., Hayashi K., Wada M., Ohno H. Green Chem., 2008, 10:44

[61]. Sun N., Rodríguez H., Rahman M., Rogers R.D. Chem. Commun., 2011, 47:1405

[62]. Remsing R.C., Hernandez G., Swatloski R.P., Massefski W.W., Rogers R.D., Moyna G. J. Phys. Chem. B, 2008, 112:11071

[63]. Remsing R.C., Swatloski, R.P., Rogers R.D., Moyna G. Chem. Commun., 2006, 2006:1271

[64]. Wang H., Gurau G., Rogers R.D. Chem. Soc. Rev., 2012, 41:1519

[65]. Liu Y.R., Thomsen K., Nie Y., Zhang S.J., Meyer A.S. Green Chem., 2016, 18:6246

[66]. Lu B., Xu A., Wang J. Green Chem., 2014, 16:1326

[67]. Mai N.L., Koo Y.M. ACS Sustainable Chem. Eng., 2016, 4:541

[68]. Mazza M., Catana D.A., Vaca-Garcia C., Cecutti C. Cellulose, 2009, 16:207

[69]. Gericke M., Liebert T., Seoud O.A.E., Heinze T. Macromol. Mater. Eng., 2011, 296:483

[70]. Abe M., Fukaya Y., Ohno H. Chem. Commun., 2012, 48:1808

[71]. Kamida K., Okajima K., Matsui T., Kowsaka K. Poly. J., 1984, 16:857

[72]. Gregg D., Saddler J.N. Appl. Biochem. Biotechnol., 1996, 58:711

[73]. Himmel M.E., Ding S.Y., Johnson D.K., Adney W.S., Nimlos M.R., Brady J.W., Foust T.D. Science, 2007, 315:804

[74]. McCann M.C., Carpita N.C. J. Exp. Bot., 2015, 66:4109

[75]. Yoo C.G., Yang Y., Pu Y., Meng X., Muchero W., Yee K.L., Thompson O.A., Rodriguez M., Bali G., Engle N.L., Lindquist E., Singan V., Schmutz J., DiFazio S.P., Tschaplinski T.J., Tuskan G.A., Chen J.G., Davison B., Ragauskas A.J. Green Chem., 2017, 19:5467

[76]. Ding S.Y., Liu Y.S., Zeng Y., Himmel M.E., Baker J.O., Bayer E.A. Science, 2012, 338:1055

[77]. Silveira R.L., Stoyanov S.R., Gusarov S., Skaf M.S., Kovalenko A. J. Am. Chem. Soc., 2013, 135:19048

[78]. Grantham N.J., Wurman-Rodrich J., Terrett O.M., Lyczakowski J.J., Stott K., Iuga D., Simmons T.J., Durand-Tardif M., Brown S.P., Dupree R., Busse-Wicher M., Dupree P. Nat. Plants, 2017, 3:859

[79]. Busse-Wicher M., Li A., Silveira R.L., Pereira C.S., Tryfona T., Gomes T.C.F., Skaf M.S., Dupree P. Plant Physiol., 2016, 171:2418

[80]. Busse-Wicher M., Gomes T.C., Tryfona T., Nikolovski N., Stott K., Grantham N.J., Bolam D.N., Skaf M.S., Dupree P. Plant J., 2014, 79:492

[81]. Martínez-Abad A., Berglund J., Toriz G., Gatenholm P., Henriksson G., Lindström M., Wohlert J., Vilaplana F. Plant Physiol., 2017, 175:1579

[82]. Giummarella N., Lawoko M. ACS Sustainable Chem. Eng., 2016, 4:5319

[83]. Lawoko M., Henriksson G., Gellersted G. Biomacromolecules, 2005, 6:3467

[84]. Kilpelainen I., Xie H., King A., Granstrom M., Argyropoulos D.S. J. Agric Food Chem., 2007, 55:9142

[85]. Zavrel M., Bross D., Funke M., Buchs J., Spiess A.C. Bioresour Technol., 2009, 100:2580

[86]. Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M. Bioresource Technol., 2005, 96:673

[87]. Pan X., Xie D., Gilkes N., Gregg D.J., Saddler J.N. Appl. Biochem. Biotechnol., 2005, 121:1069

[88]. Jørgensen H., Kristensen J., Felby C. Biofuel. Bioprod. Bioref., 2007, 1:119

[89]. George A., Tran K., Morgan T.J., Benke P.I., Berrueco C., Lorente E., Wu B.C., Keasling J.D., Simmons B.A., Holmes B.M. Green Chem., 2011, 13:3375

[90]. Brandt A., Ray M.J., To T.Q., Leak D.J., Murphy R.J., Welton T. Green Chem., 2011, 13:2489

[91]. Pinkert A., Goeke D.F., Marsh K.N., Pang S. Green Chem., 2011, 13:3124

[92]. Tan S.S.Y., MacFarlane D.R., Upfal J., Edye L.A., Doherty W.O.S., Patti A.F., Pringle J.M., Scott J.L. Green Chem., 2009, 11:339

[93]. Çetinkol Ö.P., Dibble D.C., Cheng G., Kent M.S., Knierim B., Manfred A., W.D.E, P.J.G, Y.B. Melnichenko, Ralph J., S.B.A and H.B.M, Biofuels, 2010, 1:33

[94]. Kubo S., Hashida K., Yamada T., Hishiyama S., Magara K., Kishino M., Ohno H., Hosoya S. J. Wood Chem. Technol., 2008, 28:84

[95]. Cammarata L., Kazarian S.G., Salter P.A., Welton T. Phys. Chem. Chem. Phys., 2001, 3:5192

[96]. Stärk K., Taccardi N., Bösmann A., Wasserscheid P. Chem Sus Chem, 2010, 3:719

[97]. Pu Y.Q., Jiang N., Ragauskas A.J. J. Wood Chem. Technol., 2007, 27:23

[98]. Long J., Li X., Guo B., Wang F., Yu Y., Wang L. Green Chem., 2012, 14:1935

[99]. Yang D., Zhong L.X., Yuan T.Q., Peng X.W., Sun R.C. Ind. Crops Prod., 2013, 43:141

[100]. Roosen C., Muller P., Greiner L. Appl. Microbio. Biotechnol, 2008, 81:607

[101]. Welton T. Chem. Rev., 1999, 99:2071

[102]. Marsh K.N., Boxall J.A., Lichtenthaer R. Fluid Phase Equilibria, 2004, 219:93

[103]. Rogers R.D., Seddon K.R. Science, 2003, 302:792

[104]. Forbes D.C., Law A.M., Morrison D.W. Tetrahedron Lett., 2006, 47:1699

[105]. Rantwijk F., Sheldon R.A. Chem. Rev., 2007, 107:2757

[106]. Boon J.A., Levisky J.A., Pflug J.L., Wilkes J.S. J. Org. Chem., 1986, 51:480

[107]. Fischer T., Sethi A., Welton T., Woolf J. Tetrahedron Lett., 1999, 40:793

[108]. D'anna F., Frenna V., Noto R., Pace V., Spinelli D. J. Org. Chem., 2006,71:5144

[109]. Anderson J.L., Armstrong D.W., Wei G.T. Anal. Chem., 2006, 78:2892

[110]. Li Z., Jia Z., Luan Y., Mu T. Curr. Opinion  Solid State Mat. Sci., 2008, 12:1

[111]. Kubisa P. Prog. Poly. Sci., 2009, 34:1333

[112]. Hossain M., Aldous L. Aust. J. Chem., 2012, 65:1465

[113]. Pinkert A., Goeke D.F., Marsh K.N., Pang S. Green Chem., 2011, 13:124

 

 

How to cite this manuscript: Aderemi T. Adeleye, Hitler Louis, Hamzat A. Temitope, Monday Philip*, Pigweh I. Amos, Thomas O. Magu, Akakuru U. Ozioma, Oluwatobi O. Amusand. Ionic liquids (ILs): advances in biorefinery for the efficient conversion of lignocellulosic biomass. Asian Journal of Green Chemistry, 3(3) 2019, 391-417. DOI: 10.22034/ajgc.2018.146881.1100