Document Type: Review Article

Authors

1 Department of Physics, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria

2 Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Cross River State, Nigeria

3 CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, CAS Centre for Excellence in Nanoscience, National Centre for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China

4 Department of Chemistry, Faculty of Physical Sciences, University of Ibadan, Ibadan, Nigeria

5 Department of Chemistry, University of Ilorin, Ilorin, Kwara State, Nigeria

6 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Zhejiang, China

Abstract

The necessity of cheap energy from a clean and abundant source has naturally stirred a large research effort to find low cost and high efficiency devices to convert sunlight to electricity. A range of solution processed organic and hybrid organic−inorganic solar cells, such as dye-sensitized solar cells (DSC) and Bulk Heterojunction (BHJ) organic solar cells, have been intensely developed in the last two decades, but the conversion efficiencies required to compete in the energy market have not yet been realized. Now researchers focusing to the field of solution processed photovoltaic for the lead halide perovskite solar cell (PSC). The engineering improvements of perovskite formulations and fabrication routines have led to significant increases in power conversion efficiency (PCE%) with recent devices reaching over 22%. This review discusses the progress of perovskite solar cells focusing on device architectural design, major challenges, recent progress, and its future perspectives.

Graphical Abstract

Keywords

Main Subjects

[1]. Rose G.D.P. Fossili Novo. In De NovisQuibusdam Fossilibus Quae in Montibus Uraliis Inveniuntur; AG Schade: Berlin, Germany, 1839; p 1

[2]. Conibeer G. Mater. Today, 2007, 10:42

[3]. Albrecht S., Saliba M., Baena J.P.C., Lang F., Kegelmann L., Mews M., Steier L., Abate A., Rappich J., Korte L., Schlatmann R., Nazeeruddin M.K., Hagfeldt A., Grätzel M., Rech B. J. Ene. Environ.Sci., 2016, 9:81

[4]. Djurišić A.B., Liu FZ., Tam H.W., Wong M.K., Ng A., Surya C., Chen W., He Z.B.  Prog. Quantum Electron., 2017, 53:1

[5]. Lin Q., Nagiri R.C.R., Burn P.L., Meredith P. Adv. Opt. Mater., 2017, 5:160

[6]. Wu Y., Xie F., Chen H., Yang X., Su H., Cai M., Zhou Z., Noda T., Han L. Adv. Mater., 2017, 29:170

[7]. Shockley W., Queisser H.J. J. Appl. Phys., 1961, 32:510

[8]. Zhou Y., Gray-Weale A. Phys. Chem. Chem. Phys., 2016, 18:4476

[9]. Eperon G.E., Leijtens T., Bush K.A., Prasanna R., Green T., Wang J.T.W., McMeekin D.P., Volonakis G., Milot R.L., May R. Science, 2016, 354:861

[10]. Rajagopal A., Yang Z., Jo S.B., Braly I.L., Liang P.W. Adv Mater., 2017, 29:34

[11]. Futscher M.H., Ehrler B. ACS Energy Lett., 2017, 2:2089

[12]. Hillhouse H.W., Jen A.K.Y. Adv. Mater., 2017, 29:1702140

[13]. Bednorz J.G., Muller K.A., Zeitschrift f¨ur Physik B Condensed Matter, 1986, 64:189

[14]. Pandey R., Chaujar R. Superlat. Microstruct, 2016, 100:656

[15]. Zhao Z., Sun W., Li Y., Ye S., Rao H., Gu F., Liu Z., Bian Z., Huang C. J. Mater. Chem. A, 2017, 5:4756

[16]. He M., Zheng D., Wang M., Lin C., Lin Z. J. Mater. Chem. A, 2014, 2:5994

[17]. Yun J.S., Ho-Baillie A., Huang S., Woo S.H., Heo Y., Seidel J., Huang F., Cheng Y.B., Green M.A. J. Phys. Chem. Lett., 2015, 6:875

[18]. Duan H.S., Zhou H., Chen Q., Sun P., Luo S., Song T.B., Bob B., Yang Y. Phys. Chem. Chem. Phys., 2015, 17:112

[19]. Hodes G. Science magazine, 2013, 342:317

[20]. Amu, Loreta T. A Thesis presented to the Department of Theoretical Physics, African University of Science and Technology, Abuja, 2014, p 1

[21]. Hui-Jing D., Wei-Chao W., Jian-Zhuo Z.  J. Chin. Phys. B, 2016, 25:803

[22] Askari M.B., Mirzaei M.A.V., Mirhabibi M. Ame. J. Optics  Photonics, 2015, 3:94

[23] Mandadapu U., Victor Vedanayakam S., Thyagarajan K. Ind. J. Sci. Tech., 2017, 10: 65

[24]. Petrović M., Chellappan V., Ramakrishna S. Sol. Energy, 2015, 122:678

[25]. Stranks S.D., Snaith H.J. Nat. Nanotechnol, 2015, 10:391

[26]. Edri E., Kirmayer S., Henning A., Mukhopadhyay S., Gartsman K., Rosenwaks Y., Hodes G., Cahen D. Nano Lett., 2014, 14:1000

[27]. Yamada Y., Nakamura T., Endo M., Wakamiya A., Kanemitsu Y. J. Ame. Chem. Soc., 2014, 136:11610

[28]. Green M.A., Ho-Baillie A., Snaith H.J. Nature Photonics, 2014, 8:506

[29]. Boix P.P., Nonomura K., Mathews N., Mhaisalkar S.G. Mater. Today, 2014, 17:16

[30]. Shao Y., Xiao Z., Bi C., Yuan Y., Huang J. Nat. Commun., 2014, 5:5784

[31]. Yang B., Dyck O., Poplawsky J., Keum J., Puretzky A., Das S., Ivanov I., Rouleau C., Duscher G., Geohegan D., Xiao K. J. Ame. Chem. Soc., 2015, 137:9210

[32]. Xu J., Buin A., Ip A.H., Li W., Voznyy O., Comin R., Yuan M., Jeon S., Ning Z., McDowell J.J., Kanjanaboos P., Sun J.P., Lan X., Quan L.N., Kim D.H., Hill I.G., Maksymovych P., Sargent E.H. Nat. Commun., 2015, 6:7081

[33]. Petrus M.L., Bein T., Dingemans T.J., Docampo P. J. Mater. Chem. A, 2015, 3:12159

[34]. Niu G., Guo X., Wang L. J. Mater. Chem. A, 2015, 3:8970

[35]. Chen J., Cai X., Yang D., Song D., Wang J., Jiang J., Ma A., Lv S., Hu M.Z., Ni C. J. Power Sou., 2017, 355:98

[36]. Williams S.T., Rajagopal A., Chueh C.C., Jen A.K.Y. J. Phy. Chem. Lett., 2016, 7:811

[37]. Yang S., Fu W., Zhang Z., Chen H., Li C.Z. Journal of Material  Chemistry A., 2017, 5:11462

[38]. Niu G., Guo X., Wang L. J. Mater. Chem. A, 2015, 3:8970

[39]. Zhou H., Chen Q., Li G., Luo S., Song T.B., Duan H.S., Hong Z., You J., Liu Y., Yang Y. Science, 2014, 345:542

[40]. M. de Wild-Scholten, K. Wambach, E. Alsema, A. Jäger-Waldau, in 20th European Photovoltaic Solar Energy Conference, Barcelona, 2005

[41]. Navneet K., Rajesh M. Int. Res. J. Eng. Technol., 2017, 4:1284

[42]. Lee M.M., Teuscher J., Miyasaka T., Murakami T.N., Snaith H.J. Science, 2012, 338:643

[43]. Loi M.A., Hummelen J.C. Nature Materials, 2013, 12:1087

[44] Di Giacomo F., Fakharuddin A., Jose R., Brown T.M. Energy Environ. Sci., 2016, 9:3007

 

How to cite this manuscript: Augustine U. Agobi, Hitler Louis, Sadia Ahmed*, Oyebanji Oluwatomisin Funmilayo*, Saud-uz-Zafar, Adejoke T. Hamzat, Oluwatobi O. Amusan, Amos I. Pigweh, Ozioma U. Akakuru, Aderemi T. Adeleye, Thomas O. Magu. Perovskite photovoltaic nanostructured materials: device architectural design, challenges and recent progress.Asian Journal of Green Chemistry, 3(2) 2019, 153-168. DOI: 10.22034/ajgc.2018.140157.1081