Modification of activated carbon by ZnCl₂, CaCl₂, MgCl₂ and their applications in removal of nitrate ion from drinking water

Homa Shafiekhani a,*, Roghiyeh Barjoizadeh b

a Chemistry Department, Payame Noor University, Iran, P.O.Box: 19395-4697
b Islamic Azad University Lamerd Branch Iran, P.O.Box: 74341-55388

Article Information
Received: 15 April 2018
Received in revised: 2 May 2018
Accepted: 5 May 2018
Available online: 29 June 2018
DOI: 10.22034/ajgc.2018.65164

Abstract
Nitrate is one of the most crucial pollutants in the urban and rural drinking water resources. Many techniques have been used to remove these contaminants. In this study, granular activated carbon (GAC) modified with the mixture of ZnCl₂, CaCl₂ and MgCl₂ is utilized for the removal of nitrate from the water. Results of removing this adsorbent by batch method and changing the effective factors including contact time, adsorbent dose, nitrate concentration, pH, and temperature were investigated. Two theoretical adsorption isotherms namely Langmuir and Freundlich were used to describe the experimental results. The Langmuir isotherm model explained the sorption process well and showed the best coefficient of determination (0.9947). The nitrate sorption kinetic data were successfully fitted to pseudo-second order kinetic model. Adsorption was maximized between pH ranges 4-8. The overall results demonstrated potential applications of modified GAC for nitrate removal from the aqueous solutions.

Keywords
Nitrate removal
Adsorption isotherm
Activated carbon
Kinetic
Modification of activated carbon by ZnCl₂…

Graphical Abstract

Introduction

Agricultural and industrial activities advancement has caused creation of anionic inorganic toxic pollutants such as nitrate. Nowadays, these pollutants in environment have caused public concern about the quality of underground water [1, 2].

Nitrate is created and entered into the water resources through industrial processes such as fertilizing, cellophane, pectin, and ammunition making [3]. Hence, the world health organization (WHO) and the united state environmental protection agency (USEPA) have recommended maximum concentration of nitrate in drinking water, 50 mg/L in terms of nitrogen and 10 mg/L in terms of nitrate [4, 5]. Elevated nitrate concentrations in drinking water more than the maximum acceptable contaminant level are associated with health problem such as methemoglobinemia in babies and stomach cancer in adults. For these reasons, removal of nitrate from water is essential. When the nitrate concentration of the drinking water surpasses the most extreme allowable concentration, the nitrate removal becomes a technical challenge. To remove different forms of nitrogen from aqueous solutions various methods have been reported. These methods include ion exchange, adsorption, reverse osmosis, electrodialysis, denitrification, algal removal, ozonation, and activated carbon filter [6, 7]. Among these processes, the adsorption process of nitrate ions were the object of research of a few authors [8, 9]. Adsorption process has been considered for its ease of
operation, design, economic considerations, as well as regeneration of low-cost adsorbents for pollutant removal in recent years.

In this study, the activated carbon was modified with mixture of the ZnCl₂, CaCl₂, and MgCl₂ and used to remove nitrate from the aqueous solution by sorption. Accordingly, the effects of various parameters on the adsorption process such as pH, sorbent concentration (Cs), and time were investigated. Adsorption isotherms were performed at different nitrate concentrations.

Experimental

Materials and methods

All chemicals and reagents were used in the modification and adsorption experiments were purchased from Merck. A Shimadzu 1601 (UV/Vis) spectrophotometer with a 1.0 cm quartz cell was used for absorbance measurement at a fixed wavelength. A Metrohm pH meter 827 was employed for pH measurements. Commercial granular activated carbon (GAC) as a solid sorbent with a particle size between 1 and 2 mm was used. The standard stock solution of nitrate (100 mg/L) was prepared by dissolving 0.0137 g of NaNO₃ in water in 100 mL volumetric flask. Calcium chloride, magnesium chloride and zinc chloride were used to chemically modify the activated carbon surface. A 500 mL solution of 500 mg/L⁻¹ CaCl₂, MgCl₂, and ZnCl₂ were prepared in a 500 mL beaker. Then 10 g of GAC was added, and the solution was stirred for 3 h. Following filtration of the solution, the coal retained by the filter was dried for 24 h in an oven at 150 °C.

Batch experiments

For each batch adsorption test, 25 mL of solution containing 100 mg/L⁻¹ of nitrate with granular activated carbon modified with CaCl₂, MgCl₂, and ZnCl₂ were used. The tests were performed at room temperature (25±3 °C) for 45 min under the constant stirring in a shaker. Subsequently, the solution was filtered with filter paper and the concentration of the residual nitrate determined by UV-vis spectrophotometer (λ=220 nm) as described in the standard methods [10]. The amount of nitrate adsorbed to the GAC-modified material was calculated by the following equation.

\[q_e = \frac{(C_i - C_e)}{M_s} \times V \] \hspace{1cm} (1)

\(q_e \) represents the amount of adsorbate adsorbed per unit mass of adsorbent at equilibrium (mg/g), \(C_i \) is the initial sorbate concentration (mg/L⁻¹), \(C_e \) is the equilibrium concentration (mg/L), \(V \) is the volume of the solution (L), and \(M_s \) is the mass of sorbent (g). The effect of pH on the sorption process was
evaluated by varying the pH of the sorption solution. The pH values were established for each test and kept constant by regular monitoring.

Adsorption isotherms

Adsorption isotherm model of Langmuir and Freundlich isotherms were utilized to describe the experimental adsorption data. The Langmuir isotherm has been utilized broadly by many researchers to describe the adsorption of heavy metals, dyes and organic pollutants onto materials for example, activated carbon, clay and food industry waste [11–13]. The Langmuir isotherm model estimates the maximum adsorption capacity produced from the complete monolayer coverage on the adsorbent surface [14]. The non-linear Langmuir isotherm model can be expressed by the following equation:

$$\frac{C_e}{q_m} = \frac{1}{q_m K_L} + \frac{C_e}{q_e}$$ \hspace{1cm} (2)

Where q_m represents the maximum capacity of sorption (mg/g), C_e is the equilibrium concentration (mg/L), and K_L is the constant of surface energy (L/mg).

While Freundlich isotherm expecting that the adsorption process happens on heterogeneous surfaces with non-uniform distribution of adsorption heat [15] describes the Freundlich equation as an empirical relationship, in light of the fact that the sorption capacity is unlimited when the solution concentration increases. For strongly favorable isotherms, the Freundlich equation generally fits the empirical data well, especially for solid-liquid sorption. Equation 3 represents the Freundlich model.

$$q_e = K_f C_e^{1/n}$$ \hspace{1cm} (3)

Where C_e is the equilibrium concentration (mg/L), K_f and n are Freundlich constant with n giving an indication of how favorable the adsorption process is (mg/g) $(L/mg)^{1/n}$ is related with adsorption capacity of the adsorbent.

In this study, Langmuir and Freundlich isotherm models were used to describe the relationship between the amounts of nitrate adsorbed and its equilibrium concentration in solution at 28 °C using adsorbate (1 g), nitrate solutions (60, 80, 100, 120 mg/L) pH (7) and contact time (45 mi) was studied and results are shown in Figure 1.

Results and discussion

Optimization of pH of solution
The pH is one of the important parameters controlling the removal of pollutants from waste water [16]. Adsorption of nitrate by modified activated carbon was investigated in the pH range 4–8. The pH was varied by adding different volume NaOH and HCl solutions. After the desired pH was fixed for nitrate solution, 1 g of adsorbent was mixed with it. The mixture was then shaken at 28 °C for 45 min and nitrate analysis was performed. The result showed that when the pH increased from 4–7 the adsorption efficiency increased, whereas it decreased from 7 to 9 (Figure 2) and the highest removal efficiency of nitrate (72.2 %) occurred at pH = 7. As a result, in subsequent studies, the optimum pH of 7 was selected. Also, effect of buffer volume on nitrate removal by activated carbon showed in Figure 3.

Effect of contact time

Contact time is an important parameter to determine the equilibrium time of adsorption process [17]. To determine equilibrium time, 1 g of adsorbent was mixed with nitrate solutions (25 mL, 100 mg/L) with pH 7. Experimental determination of nitrate ion was conducted after the mixture was shaken at 30 °C and for the desired time. The experiment was done for different contact time of 10, 25, 35, 45, 55 and 65 min. The results are demonstrated in Figure 4. As seen in Figure 4, the nitrate adsorption onto activated carbon increases when increasing treatment time starting from 0 to 45 min. This trend could be attributed to the fact that at the initial between 0–45 minutes there exist a number of vacant sites on the adsorbent but after 45 min these sites became filled with the adsorbate molecules which at a point between 55 and 65 min the repulsive force between solute molecules and bulk phase becomes significant and the vacant sites remain constant with time.

Effect of adsorbent dosage

Different amounts (0.3–2.0 g) of adsorbent was placed into conical flasks, then nitrate solutions (25 mL, 100 mg/L) with pH 7 was added to it. The mixture was then shaken for 45 min at 30 °C. As indicated in Figure 5, removal of nitrate increased with increase in adsorbent mass. With the increasing dosage of adsorbent from 0.3 to 1 g, the removal efficiency of nitrate increased from 72.7 to 77%. The increase in the dosage of adsorbent can provide a larger specific surface area and more adsorption sites for nitrate removal. However, as the adsorbent dosage increased from 1 g/100 mL to 2 g/100 mL, the removal efficiency of nitrate decreased slightly and became stable. This may be due to the aggregation of adsorbent particles with the increase in adsorbent dosage, leading the surface adsorption sites to fail to be fully utilized. Therefore, 1 g adsorbent was used in subsequent studies as optimum amount.
Figure 1. Langmuir plot for adsorption of nitrate solution (100 mg/L)

Figure 2. Effect of pH on nitrate removal by activated carbon

Figure 3. Effect of buffer volume on nitrate removal by activated carbon
Effect of temperature

Temperature affects the adsorption rate by altering the molecular interactions and the solubility of the adsorbent [18] and thus affects adsorption. To find an optimum temperature, the adsorption
Modification of activated carbon by ZnCl$_2$ was done at a temperature of 5, 15, 20, 25, 30, 40, 50, and 60 °C. The result showed that the percentage of nitrate adsorption increased when the temperature increased to 25 °C. Therefore, temperature 25 °C was used in subsequent studies as optimum temperature (Figure 6).

Interference studies

Various ions were added to the solution containing 100 mg/L of nitrate and the general batch procedure was applied. The tolerance limit was set as the concentration required to cause ± 5% error in determination of the nitrate. The obtained results are given in Table 1. Among the anions and cations studied, many of them did not interfere even that more than 10 times of concentration of nitrate. So, the proposed method can be applied for determination of nitrate in water samples containing the studied ions in reported concentrations.

Effect of agitation time and initial nitrate concentration

The amount of nitrate adsorbed (mg/g) increased with increase in nitrate concentration and remained nearly constant after equilibrium time (Figure 7). The equilibrium time was found to be 45 min for all concentrations studied. The amount of nitrate adsorbed that equilibrium (q_e) increased from 119 to 287 mg/g as the concentration was increased from 60-120 mg/L. The plots are smooth and continuous leading to saturation, suggesting the possible monolayer coverage of nitrate on the surface of the adsorbent.

Adsorption kinetics

The adsorption kinetic data of nitrate is analyzed using the Lagergren first order rate equation (Lagergren, 1898):

$$\log(q_e - q) = \log q_e - \frac{kt}{2.303}$$

Where q_e and q are the amount of nitrate adsorbed (mg/g) at equilibrium and at time (min) respectively, and K_1 is the Lagergren rate constant of pseudo first order adsorption (1 min$^{-1}$). Values of K_1 calculated from the slope of the plot of ($q_e - q$) versus t. It was found that the calculated values don’t agree with the experimental values. This suggests that the adsorption of nitrate does not follow pseudo first order kinetics [20]. The second order kinetics can be represented as:

$$\frac{t}{q_t} = \frac{1}{k_2q_e^2} + \frac{t}{q_e}$$

Where K_2 is the second order rate constant (g mg$^{-1}$ min$^{-1}$).
Figure 6. Effect of temperature on nitrate removal by activated carbon

![Figure 6](image)

Figure 7. Effect of agitation time and concentration of nitrate on removal

![Figure 7](image)

Table 1. Tolerance limit of the method for interference studied. The NO$_3^-$ concentration in samples was 100 mg/L$^{-1}$

<table>
<thead>
<tr>
<th>Interference ion</th>
<th>Tolerance limit Ratio (mg/L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_4^+$, Cu$^{2+}$, Ni$^{2+}$, I$^-$, K$^+$, Ca$^{2+}$, Na$^+$, SO$_3^{2-}$, Urea, Sn$^{2+}$, Ag$^+$, Fe$^{3+}$, Zn$^{2+}$, Co$^{2+}$, Fe$^{2+}$, Tartrate</td>
<td>1000</td>
</tr>
<tr>
<td>PO$_4^{3-}$, C$_2$O$_4^{2-}$, Cu$^{2+}$</td>
<td>500</td>
</tr>
<tr>
<td>HCO$_3^-$, CO$_3^{2-}$</td>
<td>200</td>
</tr>
<tr>
<td>Al$^{3+}$, Mg$^{2+}$</td>
<td>100</td>
</tr>
<tr>
<td>Mn$^{2+}$</td>
<td>5</td>
</tr>
</tbody>
</table>
Where k_2 is the equilibrium rate constant of pseudo second order adsorption (g/mg/min). Values of k_2 and q_e were calculated from the plot of the $\frac{t}{q}$ versus t (Figure 8). The calculated q_e values agree with experimental q_e values and also the correlation coefficients for the second order kinetic plots at all the studied concentrations were above 0.99 (Table 2). These results indicate that the adsorption system studied belongs to the second order kinetic model. Similar phenomenon has been observed in the adsorption of Cr (VI) by used tires and saw dust [21].

![Figure 8](image.png)

Figure 8. Plot of the pseudo second–order model at different initial nitrate concentrations

Table 2. Parameters of second order adsorption experimental values for different initial nitrate concentrations

<table>
<thead>
<tr>
<th>Initial nitrate conc. (μg/mL$^{-1}$)</th>
<th>Parameter</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>$\frac{t}{q} = 0.0068 t + 0.004$</td>
<td>0.9998</td>
</tr>
<tr>
<td>100</td>
<td>$\frac{t}{q} = 0.0041 t + 0.0024$</td>
<td>0.9998</td>
</tr>
<tr>
<td>120</td>
<td>$\frac{t}{q} = 0.0034 t + 0.0023$</td>
<td>0.9997</td>
</tr>
</tbody>
</table>

Conclusion

Summing up, on the basis of the obtained results, it maybe concluded that activated carbon modified with mixture of CaCl$ _2$, MgCl$ _2$ and ZnCl$ _2$ is an effective sorbent for removal of nitrate from
aqueous solutions. The increase in sorbent dosage augmented the percent removal of nitrate due to an increase in sorbent surface and dosage. Maximum removal was observed between pH 4 and 8. In this range, 72.2% of the nitrate was removed, indicating that the sorption of nitrate with mixture of CaCl$_2$, MgCl$_2$, and ZnCl$_2$-modified activated carbon can be accomplished over a wide range of pH. Langmuir isotherm curves was found to be significant compared to Freundlich isotherm. Finally, it was found that sorption kinetics obeyed a second-order kinetic model.

Acknowledgment

We would like to show our gratitude to the Lamerd Azad University for their assist and encouragements.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[10]. Apha A. WPCF Standard methods for the examination of water and wastewater; American Public Health Association: Washington DC, 1995; p 24
[16]. Nuhoglu Y., Oguz E. Process Biochem., 2003, 38:1627
[19]. Lagergren S.K. Sven. Vetenskapsakad. Handlingar, 1898, 24:1

How to cite this manuscript: Homa Shafiekhani*, Roghiyeh Barjoizadeh. Modification of activated carbon by ZnCl₂, CaCl₂, MgCl₂ and their applications in removal of nitrate ion from drinking water. Asian Journal of Green Chemistry, 3 (1) 2019, 1-12. DOI: 10.22034/ajgc.2018.65164