CiteScore: 2.1     h-index: 21

Document Type : Original Research Article

Authors

1 Department of Biochemistry, Bayero University Kano, P.M.B. 3011, Kano, Nigeria

2 Department of Biochemistry, University of Nigeria, Nsukka, 410001, Enugu, Nigeria

Abstract

Plant phytochemicals appeared to be a promising tool to address resistance and environmental problems posed by synthetic insecticides. This study explored the larvicidal effects, and synergistic toxicity of Ficus sycomorus and Calotropis procera leaves on African malaria vector, Anopheles species sourced from agricultural fields in Kano-Nigeria. The qualitative and quantitative phytochemicals were determined using standard methods. Late third Instar larvae (L3) of Anopheles mosquitoes were subjected to bioassay at various concentrations (0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mg/mL) of ethanol extracts using the WHO standard protocol with some modifications. The synergistic potential was predicted using mathematical model. The extract of F. sycomorus revealed the highest concentration of flavonoids, alkaloids, saponins and phenols, while C. procera extract had high concentration of glycosides and tannins. However, only alkaloids concentrations (15.41 mg/mL and 7.7 mg/mL) was statistically significant between the two plants (p <0.05). The bioassays show high percentage mortalities in both plants with C. procera extract being more toxic (LC50=0.51 mg/mL; ꭓ2=0.83; 95% confidence limits, CI: 0.30-0.84; p>0.05) on Anopheles larvae than F. sycomorus extract (LC50=1.01 mg/mL; ꭓ2=0.920; 95% confidence limit, CI: 0.50-2.05; p>0.05). The binary combination (concentration LC25:LC25) of the two plants produced promising results of higher mortality than individual highest extract concentrations (LC50=0.38 mg/mL; ꭓ2=0.72; 95% confidence limits, CI: 0.23-0.61; p>0.05) due to possibly synergistic effect of the two plants (X2=13.33). The percentage mortalities in all the crude extracts tested were concentration dependent. It is evident from this study that crude extracts of F. sycomorus and C. procera have promising individual and synergistic larvicidal bioactivities and hence, can be employed in integrated approach for vectors resistance management.

Graphical Abstract

Larvicidal and synergistic toxicity of Ficus sycomorus and Calotropis procera leaf extracts against malarial vector Anopheles gambiae complex from Kano-Nigeria: A green Bio-control approach

Keywords

Main Subjects

[1]. Snow RW., Amaratia P., Kabaria CW., Noor AM., Marsh K. Adv parasitol., 2012, 78:169
[2]. Karunamoorthi A., Sabesan S. Health Scope., 2012, 2:4
[3]. Benelli G., Maggi F, Pavela R. Environ. Sci. Pollut. Res., 2018, 25:10184
[4]. Liu N. Ann. Rev. Entomol., 2015, 60:537
[5]. Ghosh A., Chowdhury N., Chandra G. Ind. J. Med. Res., 2012, 135:581
[6]. Shivakumar M.S., Srinivasan R., Natarajan D. Asian J. Pharm. Clin. Res., 2013, 6:77
[7]. Wilson C.L., Solar J.M., Ghaouth A.E., Wisniewski M.E. Plant Dis., 1997, 81:204
[8]. Panella N.A.M.C., Dolan J.J., Karchessy Y., Xiong J., Peralta-Cruz M., Khasawneh J.A. J. Med. Entomol., 2005, 42:352
[9]. Pavela R., Maggi F., Lupidi G., Mbuntcha H., Woguem V., Womeni H.M., Barboni L., Tapondjou L.A., Benelli G. Environ. Sci. Pollut. Res., 2017, 25:10493
[10]. Rao B.R., Anupama K., Anand S.K.R.L., Murugesan T., Pal M., Mandal S.C. Phytomedicine, 2002, 9:731
[11]. Rao C.V., Verma A.R., Vijayakumar M., Rastogi S. J. Ethnopharmacol., 2008, 115:323
[12]. Phan V.K., Chau V.M., Nguyen X.N., Bui H.T., Tran H.Q., Hoang L.T.A., Nguyen X.C., Truong N.H., Seung H.K., Jin K.K., Hae-Dong J.,Young H.K. Bull. Korean Chem. Soc., 2012, 33:3461
[13]. Mbosso T.J.E., Siwe Noundou X., Nguemfo E.L., Meyer F., Djoukoue A., Van Antwerpen P., Ngouela S., Tsamo E., Mpondo M.E.A., Vardamides J.C., Azebaze A.G.B., Wintjens R. Fitoterapia, 2016a, 112:65
[14]. Mbosso T.J.E., Nguedia A.J.C., Meyer F., Donfack V.E., Lenta N.B., Ngouela S., Tsamo E., Adiogo D., Azebaze A.G.B., Wintjens R. Pharmaceut., Biol., 2016b, 54:1086
[15]. Galati E.M., Monforte M.T., Tripodo M.M., D’aquino A., Mondello M.R. J. Ethnopharmacol., 2001, 76:1
[16]. De-Amorin A.H., Borba H.R., Carauta L.D., Kaplan M.A. J. Ethnopharmacol., 1999, 64:255
[17]. Pistelli L., Chiellini E.E., Moselli I. Biochem. Syst. Ecology, 2000, 28:287
[18]. Dangarembizi R., Kennedy H., Erlwanger D.M., Chivandi E. Afr J Trad. Complement. Altern. Med. 2013, 10:203
[19]. Romeh A.A. Afri. J. of Agric. Res., 2013, 8:3571
[20]. Kumar V.L., S. Arya S.“Medicinal uses and pharmacological properties of Calotropis procera,” in Recent Progress in Medicinal Plants, vol. 11, Studium Press, Houston, Tex, USA, 2006; pp. 373
[21]. Chaudhuri R.H.N. Bull. Bot. Surv. Ind., 1961, 3:171
[22]. Mohsin A., Shah A.H., Alaha M.A., Tariqi M.O., Ageel A.M. Fitoterapia, 1989, 60:174
[23]. Larhsini M., Bousad M., Lazrek H.B., Jana M., Amarouch H. Fitoterapia, 1997, 68:371
[24]. Ja P. Healing Plants of PeninsularIndia. Wallingford, UK and New York: CAB International 2001; p. 944
[25]. Ahmed K.K.M., Rana A.C., Dixit V.K. Pharmacog. Magmt., 2005, 1:48
[26]. Grisales N., Poupardin R., Gomez  S., Fonseca-Gonzalez I., Ranson H., Lenhart A. PLoS Neg. Trop. Dis.,2013,7:e2438
[27]. WHO CDS/WHO PES. Guidelines for laboratory and field testing of mosquito larvicides, 2005
[28]. Tiwari P., Kumar B., Kaur M., Kaur G.,  Kaur H. Int. Pharmaceut. Sci., 2011, 1:98
[29]. Abbott W.S. J. Econ. Entomol., 1925, 18:265
[30]. Hummelbrunner L.A., Isman M.B. J. Agric. Food Chem., 2001, 49:715
[31]. Pavela, R. Parasitol. Res., 2015, 114: 383
[32]. Robertson J.L., Jones M.M., Olguin E., Alberts B. Bioassays with Arthropods, Boca Raton FL; CRC Press, 2017; p 1-67
[33]. Nnko E.J., Kihamia C., Tenu F., Premji Z. Kweka E.J. BMC Res Notes, 2017, 10:443
[34]. Nandita C., Anupam G., Goutam C. BMC Complement. Altern. Med., 2008, 8:10
[35]. Farooq U., Waseem B., Muzaffar R., Tripathi J., Tharani M., Sharma M. Int. J. Res. Pharmaceut. Chem., 2014, 4:96
[36]. Vindhya K., Sampath Kumara K.K., Neelambika H.S., Leelavathi S. Res. J. Pharm. Biol. Chem. Sci., 2014, 5:527
[37]. Rey D., Pautou M.P., Meyran J.C. J. Invertebrat. Pathol., 1999, 73:173
[38]. Mann R.S., Kaufman P.E. Mini-Reviews Organic Chem., 2012, 9:185
[39]. Hostettmann K, Marston A. Saponins (Chemistry and pharmacology of natural products). University Press, Cambridge, 1995; p. 132
[40]. Shaalan E.A.S., Canyon D., Younes M.W.F., Wahab H.A., Mansour A.H. Environ. Int., 2005, 31:1149
[41]. Isman M.B. Pest Magmt. Sci., 2015, 71:1587
[42]. Benelli G. Parasitol. Res., 2015, 114: 2801
[43]. Stevenson P.C., Ismanc M.B., Belmaina S.R. Ind. Crop Prod., 2017, 110:2
[44]. Raji J.I., Akinkurolere R.O. Nig. Biosci, 2010, 1:1
[45]. Chakkaravarthy V.M., Ambrose T., Vincent S., Arunachalam R., Paulraj M.G., Ignacimuthu S. J. Entomol., 2011, 8:191
[46]. Govindarajan M. Eur. Rev. Med. Pharmacol. Sci., 2010, 14:107
[47]. Muema J.M., Njeru S.N., Colombier C., Marubu R.M. BMC Complement Altern Med., 2016, 16:475
[48]. Yugi J.O., Okeyo-Owuor B.J., Kogogo P.W., Luvaha GM., Okwiri LO., Rono T.M., Vulule J.M. J. Mosquito Res., 2015, 5:1
[49]. Mbare O., Lindsay S.W., Fillinger U. Malar J., 2013, 12:94
[50]. Sun Y.P., Johnson E.R. J. Agric. Food Chem., 1960, 8:261
[51]. Chansang A., Champakaew D., Junkum A., Jitpakdi A., Amornlerdpison D., Aldred A.K., Riyong D., Wannasan A., Intirach J., Muangmoon R. Parasit Vectors, 2018, 11:417
[52]. Mueen A.K.K., Rana A.C., Dixit V.K. Pharmacog. Mag., 2005, 1:48
[53]. Bagavan A., Rahuman A.A., Kamaraj C., Geetha K. Parasitol. Res., 2008, 103:223
[54]. Krishnappa K., Dhanasekaran S., Elumalai K. Asian Pacific J. Trop. Med., 2012, 5:598
[55]. Imam T.S., Tajuddeen U.M. J. Res. Environ. Sci. Toxicol., 2013, 2:121
[56]. Hayatie L., Biworo A., Suhartono E. J. Med Engr., 2015, 4:417
[57]. Rattan R.S. Crop Protec., 2010, 29:913
[58]. Hayes WJ Jr. Pesticides Studied in Man. Williams & Wilkins, Baltimore, 1982;      pp. 92
[59]. Liu Z.L., Liu Q.Z., du S.S., Deng Z.W. Parasitol. Res., 2012, 111:991
[60]. Simon-Oke L.A., Afolabi O.J., Ajayi O.T. Futa J. Res. Sci., 2015, 1:152
[61]. Martinez-Ortiz-de-Montellano C, Vargas-Magana J.J., Canul-Ku H.L., Miranda-Soberanis R., Capetillo-Leal C., Sandoval-Castro C.A. Vet. Parasitol., 2010, 172: 283
[62]. Rey D., David J.P., Besnard G., Jullien J.L., Lagneau C., Meyran J.C. Entomol. Exp. Appl. 2001, 98:361
[63]. Pautou M.P., Rey D., David J.P., Meyran J.C. Ecotoxicol. Environ. Safety, 2000, 47:323
[64]. Gbolade A. Plant derived insecticides in the control of malaria vector. In: Adewunmi, C.O., Adesina, S.K. (Eds.), Phytomedicines in Malaria and Sexually Transmitted Diseases: Challenges for new Millennium, Drug research and Production Unit, Faculty of Pharmacy. Obafemi, Awolowo University, lle-fe, Nigeria, 2000;  pp. 48
[65]. Cespedes C.L., Molina S.C., Munoz E., Lamilla C., Alarcon J., Palacios S.M. Ind Crops Prod., 2013, 42:78
[66]. Trigo J.R., Campos S., Pereira A.M. Presença de alcalóides pirrolizidinicos em Ageratum conyzoides L. Simp. Plantas Med. do Bras. Sao Paulo. (Resumos). 1988; pp. 13
[67]. Lee S-H., Oh H-W., Fang Y., An S-B., Park D-S., Song H-H., et al.  Proc Natl Acad Sci USA., 2015, 112:1733
[68]. Hollingworth R., Ahmmadsahib K., Gedelhak G., McLaughlin J. Biochem. Soc. Transac., 1994, 22:230
[69]. Wiseman Z., Chapagain B.P. Afr. J. Biotechnol., 2005, 4:1351
[70]. Khanna V.G., Kannabiran K. Afr. J. Biotechnol., 2007, 3:307
[71]. Chowdhury N., Ghosh A., Chandra G. BMC Complement. Altern. Med., 2008, 8:10